83 research outputs found

    Procedural Impact of a Kissing-Balloon Predilation (Pre-Kissing) Technique in Patients With Complex Bifurcations Undergoing Drug-Eluting Stenting

    Get PDF
    Aim: To assess the impact of lesion predilation with kissing inflation using under-sized balloons (pre-kissing [PK]) on the procedural outcome of percutaneous intervention (PCI) on coronary bifurcation lesions (CBLs). Methods: Patients who underwent PCI with second-generation drug-eluting stenting on a complex CBL (Medina 1,1,1 or 1,0,1 or 0,1,1) were selected. The study population was divided according to the lesion preparation into the PK group and the control group. To adjust for higher anatomic complexity of PK patients, a 2:1 propensity-matched (PM)-control group was selected. The PCI procedural details were assessed to evaluate occurrence of "side-branch trouble" (primary procedural endpoint) after main-vessel (MV) stenting. Angiographic characteristics, including side-branch TIMI flow during PCI, were also systematically evaluated. Results: A total of 538 patients were identified, with 66 patients in the PK group, 472 patients in the control group, and 126 patients in the PM-control group. Side-branch trouble was less common in side-branch PK patients vs the PM-control patients (7.5% vs 18.0%, respectively; P=.03). In multivariable analysis, the absence of PK independently predicted side-branch trouble. Among selected patients with a long side-branch lesion (122 patients), the PK technique improved post-MV stenting side-branch TIMI flow. Conclusions: Use of PK with under-sized balloons may facilitate side-branch management after MV stenting in patients with complex CBL undergoing provisional stenting

    GAPS-megacities: A new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air

    Get PDF
    A pilot study was initiated in 2018 under the Global Atmospheric Passive Sampling (GAPS) Network named GAPS-Megacities. This study included 20 megacities/major cities across the globe with the goal of better understanding and comparing ambient air levels of persistent organic pollutants and other chemicals of emerging concern, to which humans residing in large cities are exposed. The first results from the initial period of sampling are reported for 19 cities for several classes of flame retardants (FRs) including organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and halogenated flame retardants (HFRs) including new flame retardants (NFRs), tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDD). The two cities, New York (USA) and London (UK) stood out with ∼3.5 to 30 times higher total FR concentrations as compared to other major cities, with total concentrations of OPEs of 15,100 and 14,100 pg/m, respectively. Atmospheric concentrations of OPEs significantly dominated the FR profile at all sites, with total concentrations in air that were 2–5 orders of magnitude higher compared to other targeted chemical classes. A moderately strong and significant correlation (r = 0.625, p < 0.001) was observed for Gross Domestic Product index of the cities with total OPEs levels. Although large differences in FR levels were observed between some cities, when averaged across the five United Nations regions, the FR classes were more evenly distributed and varied by less than a factor of five. Results for Toronto, which is a ‘reference city’ for this study, agreed well with a more in-depth investigation of the level of FRs over different seasons and across eight sites representing different urban source sectors (e.g. traffic, industrial, residential and background). Future sampling periods under this project will investigate trace metals and other contaminant classes, linkages to toxicology, non-targeted analysis, and eventually temporal trends. The study provides a unique urban platform for evaluating global exposome.A global study across 20 megacities/major cities reporting urban air concentrations of flame retardants and plasticizers.Authors thank the United Nations Environment Programme (UNEP) and the Chemicals Management Plan (CMP) for financial support. The worldwide implementation of the Global Monitoring Plan is made possible thanks to the generous contributions to the Stockholm Convention Voluntary Trust Fund from the Governments of Japan, Norway, Sweden, and through the European Commission’s Thematic Programme for Environment andSustainable Management of Natural Resources, including Energy (ENRTP). Further, the contribution of the projects to support POPs monitoring activities in regions, funded through the Global Environment Facility (GEF) and the Strategic Approach to International Chemicals Management (SAICM), is greatly acknowledged. Monitoring activities and data collection and analysis are implemented in the five UN regions in cooperation with strategic partners and through the involvement of Regional Organization Groups and Global Coordination Group. We also thank Yasuyuki Shibata and Yoshikatsu Takazawa (Tokyo, Japan); Juan Mu~noz-Arnanz (Madrid, Spain) and Dilek €Ozkan and Sinan Kızıltug (_Istanbul, Turkey) for their help and assistance in the sampling campaign

    GAPS-megacities: A new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air

    Get PDF
    A pilot study was initiated in 2018 under the Global Atmospheric Passive Sampling (GAPS) Network named GAPS-Megacities. This study included 20 megacities/major cities across the globe with the goal of better understanding and comparing ambient air levels of persistent organic pollutants and other chemicals of emerging concern, to which humans residing in large cities are exposed. The first results from the initial period of sampling are reported for 19 cities for several classes of flame retardants (FRs) including organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), and halogenated flame retardants (HFRs) including new flame retardants (NFRs), tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDD). The two cities, New York (USA) and London (UK) stood out with ∼3.5 to 30 times higher total FR concentrations as compared to other major cities, with total concentrations of OPEs of 15,100 and 14,100 pg/m3, respectively. Atmospheric concentrations of OPEs significantly dominated the FR profile at all sites, with total concentrations in air that were 2-5 orders of magnitude higher compared to other targeted chemical classes. A moderately strong and significant correlation (r = 0.625, p < 0.001) was observed for Gross Domestic Product index of the cities with total OPEs levels. Although large differences in FR levels were observed between some cities, when averaged across the five United Nations regions, the FR classes were more evenly distributed and varied by less than a factor of five. Results for Toronto, which is a "reference city" for this study, agreed well with a more in-depth investigation of the level of FRs over different seasons and across eight sites representing different urban source sectors (e.g. traffic, industrial, residential and background). Future sampling periods under this project will investigate trace metals and other contaminant classes, linkages to toxicology, non-targeted analysis, and eventually temporal trends. The study provides a unique urban platform for evaluating global exposome.Fil: Saini, Amandeep. Environment and Climate Change; CanadáFil: Harner, Tom. Environment and Climate Change; CanadáFil: Chinnadhurai, Sita. Environment and Climate Change; CanadáFil: Schuster, Jasmin K.. Environment and Climate Change; CanadáFil: Yates, Alan. Environment and Climate Change; CanadáFil: Sweetman, Andrew. Lancaster Environment Centre; Reino UnidoFil: Aristizabal Zuluaga, Beatriz H.. Universidad Nacional de Colombia; ColombiaFil: Jiménez, Begoña. Consejo Superior de Investigaciones Científicas; EspañaFil: Manzano, Carlos A.. Universidad de Chile; ChileFil: Gaga, Eftade O.. Eskisehir Technical University; TurquíaFil: Stevenson, Gavin. National Measurement Institute; AustraliaFil: Falandysz, Jerzy. Uniwersytet Gdanski; PoloniaFil: Ma, Jianmin. Peking University; ChinaFil: Miglioranza, Karina Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Kannan, Kurunthachalam. Nyu Grossman School Of Medicine; Estados UnidosFil: Tominaga, Maria. Sao Paulo State Environmental Company; BrasilFil: Jariyasopit, Narumol. No especifíca;Fil: Rojas, Nestor Y.. Universidad Nacional de Colombia; ColombiaFil: Amador-Muñoz, Omar. Universidad Nacional Autónoma de México; MéxicoFil: Sinha, Ravindra. Patna University; IndiaFil: Alani, Rose. University of Lagos; NigeriaFil: Suresh, R.. No especifíca;Fil: Nishino, Takahiro. Tokyo Metropolitan Research Institute for Environmental Protection; JapónFil: Shoeib, Tamer. American University In Cairo; Egipt

    Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine

    Full text link

    Passive-sampler derived air concentrations of persistent organic pollutants on a north-south transect in Chile

    No full text
    Passive air samplers consisting of polyurethane foam (PUF) disks, were deployed in six locations in Chile along a north-south transect to investigate gas-phase concentrations of polychlorinated biphenyls [PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEsI. The study provides new information on air concentrations of these persistent organic pollutants (POPs) which is lacking in this region. It also provides insight into potential sources and long-range transport (LRT). The samplers were deployed for a 2-month period in five remote sites and one site in the city of Concepcibn. Mean concentrations [pg m-" for ZPCB were 4.7 f 2.7 at remote sites and 53 f 13 in Concepcibn. PCB levels at remote sites were related to proximity to urban source regions andlor air back traiectories. With the exceotion of endosulfan I. mean concenfrat.ons Ipg m31 of OCPS at bacaround s tes were consistentlv ow: 5.4 + 1.4forii-HCh. 7.0 g1.1 for y-HCH, 2.5 1 0 . 5 f o ; ~ ~ , 2.5 f 0.6 for CC, ' 1.9 I 1.2 for dieldrin, and less than 3.5 for toxaphene. Endosulfan I showed a decreasing concentration gradient from 99 to 3.5 pg me3 from the north to south of Chile. Concentrations of OCPs inthe Concepcibn Clwere generally 10-20times higher than atthe backgroundsitessuggesting continued usage andlor re-emission from past use. For instance, at remote sites, the d y ratio (0.76) was typical of background air, while the ratio in Concepcibn (0.12) was consistent with fresh use of y-HCH. Levels of XPBOEs were below the detection limit of 6 pg m-3 at al1 sites
    corecore