106 research outputs found

    α-Smooth muscle actin expression in cancerassociated fibroblasts in canine epithelial tumors

    Get PDF
    Tumor tissues contain not only cancer cells but also other cell types including, fibroblasts, immune cells, and endothelial cells, which interact with cancer cells. In human medicine, cancer-associated fibroblasts (CAFs) have been reported to promote tumor growth. CAFs are known to express α-smooth muscle actin (α-SMA), and this expression is correlated with poor prognosis in humans with cancer. However, the role of CAFs in canines and α-SMA expression in canine CAFs remains unknown. This study evaluated whether CAFs are present within the stroma of various types of canine epithelial tumors, for example, mammary gland tumors, squamous cell carcinoma, and anal sac adenocarcinoma, and assessed α-SMA expression in CAFs isolated from canine epithelial tumors. α-SMA analysis of tumor tissues revealed a cytoplasmic localization with variable levels of expression. α-SMA was detected in 60.9% (14/23) of epithelial tumor tissues and in 80% (8/10) of anal sac adenocarcinoma tissues. CAFs and normal fibroblasts (NFs) were isolated from tumor and skin tissues. The size of CAFs was variable, and most CAFs had large cell volume, in contrast to NFs. Most CAFs expressed α-SMA stress fibers and had higher α-SMA protein levels than NFs. Taken together, our findings provide evidence that canine CAFs express α-SMA in various canine epithelial tumors. Further studies are required to investigate the correlation between canine CAFs and clinical parameters and to elucidate the mechanisms underlying the effects of CAFs on cancer progression

    Effect of Environmental Change while Climbing Mt. Daisen on Forced Vital Capacity and Forced Expiratory Volume % in Young Women

    Get PDF
    The aim of the present study was to clarify the effects of environmental change while climbing Mt. Daisen on forced vital capacity and forced expiratory volume % in young women in summer. Seven healthy Japanese women (age: 22.6 ± 4.2 years) volunteered to climb Mt. Daisen (1,709m), located in Tottori prefecture, in August. Participants\u27 expiratory forced vital capacity (FVC), forced expiratory volume % (FEV_%) and arterial oxygen saturation (SpO_2) were measured at 4 points (Ground: 10m, Rest point: 780m, Summit: 1,709m, Goal point: 780m). The measurements were conducted soon after the subjects\u27 arrival at each point. The degree of dyspnea sensation was measured at Ground, Rest point, Goal point and at each station. There were no significant changes in FVC. FEV_% at the summit was significantly lower than at the Ground and Rest point. No significant differences were found in SpO_2 at each measuring point. The degree of dyspnea sensation at each station soon after the subjects\u27 arrival was significantly higher than those at the Rest point. The results of this study indicated mild airway contraction induced by stresses on the respiratory system from increasing exercise intensity during an ascent of Mt. Daisen

    Calcineurin knockout mice show a selective loss of small spines

    Get PDF
    Calcineurin is required for long-term depression and activity-dependent spine shrinkage, and calcineurin mutations have been identified in patients with schizophrenia. Moreover, mice with conditional knockout of calcineurin B (CNB-KO) exhibit behavioral abnormalities suggestive of schizophrenia. Changes in the dendritic spines of these mice, however, have not been investigated. We therefore examined the dendritic spines of CNB-KO mice, and observed a significant reduction in small spines and an increase in large spines in the prefrontal and visual cortices. The effect of CNB-KO on the spine sizes was relatively moderate, possibly due to the presence of spontaneous fluctuations (dynamics) in the dendritic spines themselves. Thus, CNB-KO mice showed a spine phenotype similar to those recently reported in patients with schizophrenia

    Labelling and optical erasure of synaptic memory traces in the motor cortex

    Get PDF
    Dendritic spines are the major loci of synaptic plasticity and are considered as possible structural correlates of memory. Nonetheless, systematic manipulation of specific subsets of spines in the cortex has been unattainable, and thus, the link between spines and memory has been correlational. We developed a novel synaptic optoprobe, AS-PaRac1 (activated synapse targeting photoactivatable Rac1), which can label recently potentiated spines specifically, and induce the selective shrinkage of AS-PaRac1-containing spines. In vivo imaging of AS-PaRac1 revealed that a motor learning induced substantial synaptic remodelling in a small subset of neurons. The acquired motor learning was disrupted by the optical shrinkage of the potentiated spines, whereas it was not affected by the identical manipulation of spines evoked by a distinct motor task in the same cortical region. Taken together, our results demonstrate that a newly acquired motor skill depends on the formation of a task-specific dense synaptic ensemble

    Relationship between Protection against Cold and the Physiological Index during a Cold Environment

    Get PDF
    A snow cave is a bivouac shelter used in mountain climbing that is widely used as a shelter against the cold during winter. In the outdoors, wind velocity and air temperature have an influence on temperature change. It could stabilize body temperature if it can control the convection of ambient air. This paper could develop a theory focusing on the relation between physiological indexes and the protection against the cold while staying in a snow cave. For example, protection against the cold could be thermal insulation underwear, thermal insulation gloves, thermal insulation socks, a steam warmed temperature sheet and a rescue sheet. Measurement items were heart rate, blood pressure, rectal temperature, score of a subjective thermal sensation and the activity of the parasympathetic nervous system. It was clarified that the protection against the cold could be effective for the decrease of the physiological index. These field studies suggest that they would enable the adaptation in the adjustment range of the autonomic nervous system given these protections against the cold
    corecore