237 research outputs found
Scaling detection in time series: diffusion entropy analysis
The methods currently used to determine the scaling exponent of a complex
dynamic process described by a time series are based on the numerical
evaluation of variance. This means that all of them can be safely applied only
to the case where ordinary statistical properties hold true even if strange
kinetics are involved. We illustrate a method of statistical analysis based on
the Shannon entropy of the diffusion process generated by the time series,
called Diffusion Entropy Analysis (DEA). We adopt artificial Gauss and L\'{e}vy
time series, as prototypes of ordinary and anomalus statistics, respectively,
and we analyse them with the DEA and four ordinary methods of analysis, some of
which are very popular. We show that the DEA determines the correct scaling
exponent even when the statistical properties, as well as the dynamic
properties, are anomalous. The other four methods produce correct results in
the Gauss case but fail to detect the correct scaling in the case of L\'{e}vy
statistics.Comment: 21 pages,10 figures, 1 tabl
Levy Flights in Inhomogeneous Media
We investigate the impact of external periodic potentials on superdiffusive
random walks known as Levy flights and show that even strongly superdiffusive
transport is substantially affected by the external field. Unlike ordinary
random walks, Levy flights are surprisingly sensitive to the shape of the
potential while their asymptotic behavior ceases to depend on the Levy index
. Our analysis is based on a novel generalization of the Fokker-Planck
equation suitable for systems in thermal equilibrium. Thus, the results
presented are applicable to the large class of situations in which
superdiffusion is caused by topological complexity, such as diffusion on folded
polymers and scale-free networks.Comment: 4 pages, 4 figure
From deterministic dynamics to kinetic phenomena
We investigate a one-dimenisonal Hamiltonian system that describes a system
of particles interacting through short-range repulsive potentials. Depending on
the particle mean energy, , the system demonstrates a spectrum of
kinetic regimes, characterized by their transport properties ranging from
ballistic motion to localized oscillations through anomalous diffusion regimes.
We etsablish relationships between the observed kinetic regimes and the
"thermodynamic" states of the system. The nature of heat conduction in the
proposed model is discussed.Comment: 4 pages, 4 figure
Truncated Levy Random Walks and Generalized Cauchy Processes
A continuous Markovian model for truncated Levy random walks is proposed. It
generalizes the approach developed previously by Lubashevsky et al. Phys. Rev.
E 79, 011110 (2009); 80, 031148 (2009), Eur. Phys. J. B 78, 207 (2010) allowing
for nonlinear friction in wondering particle motion and saturation of the noise
intensity depending on the particle velocity. Both the effects have own reason
to be considered and individually give rise to truncated Levy random walks as
shown in the paper. The nonlinear Langevin equation governing the particle
motion was solved numerically using an order 1.5 strong stochastic Runge-Kutta
method and the obtained numerical data were employed to calculate the geometric
mean of the particle displacement during a certain time interval and to
construct its distribution function. It is demonstrated that the time
dependence of the geometric mean comprises three fragments following one
another as the time scale increases that can be categorized as the ballistic
regime, the Levy type regime (superballistic, quasiballistic, or superdiffusive
one), and the standard motion of Brownian particles. For the intermediate Levy
type part the distribution of the particle displacement is found to be of the
generalized Cauchy form with cutoff. Besides, the properties of the random
walks at hand are shown to be determined mainly by a certain ratio of the
friction coefficient and the noise intensity rather then their characteristics
individually.Comment: 7 pages, 3 figure
Levy flights in quenched random force fields
Levy flights, characterized by the microscopic step index f, are for f<2 (the
case of rare events) considered in short range and long range quenched random
force fields with arbitrary vector character to first loop order in an
expansion about the critical dimension 2f-2 in the short range case and the
critical fall-off exponent 2f-2 in the long range case. By means of a dynamic
renormalization group analysis based on the momentum shell integration method,
we determine flows, fixed point, and the associated scaling properties for the
probability distribution and the frequency and wave number dependent diffusion
coefficient. Unlike the case of ordinary Brownian motion in a quenched force
field characterized by a single critical dimension or fall-off exponent d=2,
two critical dimensions appear in the Levy case. A critical dimension (or
fall-off exponent) d=f below which the diffusion coefficient exhibits anomalous
scaling behavior, i.e, algebraic spatial behavior and long time tails, and a
critical dimension (or fall-off exponent) d=2f-2 below which the force
correlations characterized by a non trivial fixed point become relevant. As a
general result we find in all cases that the dynamic exponent z, characterizing
the mean square displacement, locks onto the Levy index f, independent of
dimension and independent of the presence of weak quenched disorder.Comment: 27 pages, Revtex file, 17 figures in ps format attached, submitted to
Phys. Rev.
Spatio-Temporal Scaling of Solar Surface Flows
The Sun provides an excellent natural laboratory for nonlinear phenomena. We
use motions of magnetic bright points on the solar surface, at the smallest
scales yet observed, to study the small scale dynamics of the photospheric
plasma. The paths of the bright points are analyzed within a continuous time
random walk framework. Their spatial and temporal scaling suggest that the
observed motions are the walks of imperfectly correlated tracers on a turbulent
fluid flow in the lanes between granular convection cells.Comment: Now Accepted by Physical Review Letter
Parabolic resonances and instabilities in near-integrable two degrees of freedom Hamiltonian flows
When an integrable two-degrees-of-freedom Hamiltonian system possessing a
circle of parabolic fixed points is perturbed, a parabolic resonance occurs. It
is proved that its occurrence is generic for one parameter families
(co-dimension one phenomenon) of near-integrable, t.d.o. systems. Numerical
experiments indicate that the motion near a parabolic resonance exhibits new
type of chaotic behavior which includes instabilities in some directions and
long trapping times in others. Moreover, in a degenerate case, near a {\it flat
parabolic resonance}, large scale instabilities appear. A model arising from an
atmospherical study is shown to exhibit flat parabolic resonance. This supplies
a simple mechanism for the transport of particles with {\it small} (i.e.
atmospherically relevant) initial velocities from the vicinity of the equator
to high latitudes. A modification of the model which allows the development of
atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities
are clearly observed
Superdiffusion in quasi-two-dimensional Yukawa liquids
The emergence and vanishing of superdiffusion in quasi-two-dimensional Yukawa
systems are investigated by molecular dynamics simulations. Using both the
asymptotic behaviour of the mean-squared displacement of the particles and the
long-time tail of the velocity autocorrelation function as indicators for
superdiffusion, we confirm the existence of a transition from normal diffusion
to superdiffusion in systems changing from a three-dimensional to a
two-dimensional character. A connection between superdiffusion and
dimensionality is established by the behaviour of the projected pair
distribution function
Time correlations and 1/f behavior in backscattering radar reflectivity measurements from cirrus cloud ice fluctuations
The state of the atmosphere is governed by the classical laws of fluid motion
and exhibits correlations in various spatial and temporal scales. These
correlations are crucial to understand the short and long term trends in
climate. Cirrus clouds are important ingredients of the atmospheric boundary
layer. To improve future parameterization of cirrus clouds in climate models,
it is important to understand the cloud properties and how they change within
the cloud. We study correlations in the fluctuations of radar signals obtained
at isodepths of winter and fall cirrus clouds. In particular we focus on three
quantities: (i) the backscattering cross-section, (ii) the Doppler velocity and
(iii) the Doppler spectral width. They correspond to the physical coefficients
used in Navier Stokes equations to describe flows, i.e. bulk modulus,
viscosity, and thermal conductivity. In all cases we find that power-law time
correlations exist with a crossover between regimes at about 3 to 5 min. We
also find that different type of correlations, including 1/f behavior,
characterize the top and the bottom layers and the bulk of the clouds. The
underlying mechanisms for such correlations are suggested to originate in ice
nucleation and crystal growth processes.Comment: 33 pages, 9 figures; to appear in the Journal of Geophysical Research
- Atmosphere
Tails of probability density for sums of random independent variables
The exact expression for the probability density for sums of a
finite number of random independent terms is obtained. It is shown that the
very tail of has a Gaussian form if and only if all the random
terms are distributed according to the Gauss Law. In all other cases the tail
for differs from the Gaussian. If the variances of random terms
diverge the non-Gaussian tail is related to a Levy distribution for
. However, the tail is not Gaussian even if the variances are
finite. In the latter case has two different asymptotics. At small
and moderate values of the distribution is Gaussian. At large the
non-Gaussian tail arises. The crossover between the two asymptotics occurs at
proportional to . For this reason the non-Gaussian tail exists at finite
only. In the limit tends to infinity the origin of the tail is shifted
to infinity, i. e., the tail vanishes. Depending on the particular type of the
distribution of the random terms the non-Gaussian tail may decay either slower
than the Gaussian, or faster than it. A number of particular examples is
discussed in detail.Comment: 6 pages, 4 figure
- …