376 research outputs found

    Fractal time random walk and subrecoil laser cooling considered as renewal processes with infinite mean waiting times

    Full text link
    There exist important stochastic physical processes involving infinite mean waiting times. The mean divergence has dramatic consequences on the process dynamics. Fractal time random walks, a diffusion process, and subrecoil laser cooling, a concentration process, are two such processes that look qualitatively dissimilar. Yet, a unifying treatment of these two processes, which is the topic of this pedagogic paper, can be developed by combining renewal theory with the generalized central limit theorem. This approach enables to derive without technical difficulties the key physical properties and it emphasizes the role of the behaviour of sums with infinite means.Comment: 9 pages, 7 figures, to appear in the Proceedings of Cargese Summer School on "Chaotic dynamics and transport in classical and quantum systems

    Relativistic Weierstrass random walks

    Full text link
    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a L\'evy-type superdiffusive behavior. It is well known that Special Relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time tct_c delimiting two qualitative distinct dynamical regimes: the (non-relativistic) superdiffusive L\'evy flights, for t<tc t < t_c, and the usual (relativistic) Gaussian diffusion, for t>tct>t_c. Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts.Comment: 5 pages, final version to appear in PR

    Superdiffusion in Decoupled Continuous Time Random Walks

    Full text link
    Continuous time random walk models with decoupled waiting time density are studied. When the spatial one jump probability density belongs to the Levy distribution type and the total time transition is exponential a generalized superdiffusive regime is established. This is verified by showing that the square width of the probability distribution (appropriately defined)grows as t2/γt^{2/\gamma} with 0<γ20<\gamma\leq2 when tt\to \infty. An important connection of our results and those of Tsallis' nonextensive statistics is shown. The normalized q-expectation value of x2x^2 calculated with the corresponding probability distribution behaves exactly as t2/γt^{2/\gamma} in the asymptotic limit.Comment: 9 pages (.tex file), 1 Postscript figures, uses revtex.st

    Diffusive behavior of a greedy traveling salesman

    Full text link
    Using Monte Carlo simulations we examine the diffusive properties of the greedy algorithm in the d-dimensional traveling salesman problem. Our results show that for d=3 and 4 the average squared distance from the origin is proportional to the number of steps t. In the d=2 case such a scaling is modified with some logarithmic corrections, which might suggest that d=2 is the critical dimension of the problem. The distribution of lengths also shows marked differences between d=2 and d>2 versions. A simple strategy adopted by the salesman might resemble strategies chosen by some foraging and hunting animals, for which anomalous diffusive behavior has recently been reported and interpreted in terms of Levy flights. Our results suggest that broad and Levy-like distributions in such systems might appear due to dimension-dependent properties of a search space.Comment: accepted in Phys. Rev.

    Scaling detection in time series: diffusion entropy analysis

    Full text link
    The methods currently used to determine the scaling exponent of a complex dynamic process described by a time series are based on the numerical evaluation of variance. This means that all of them can be safely applied only to the case where ordinary statistical properties hold true even if strange kinetics are involved. We illustrate a method of statistical analysis based on the Shannon entropy of the diffusion process generated by the time series, called Diffusion Entropy Analysis (DEA). We adopt artificial Gauss and L\'{e}vy time series, as prototypes of ordinary and anomalus statistics, respectively, and we analyse them with the DEA and four ordinary methods of analysis, some of which are very popular. We show that the DEA determines the correct scaling exponent even when the statistical properties, as well as the dynamic properties, are anomalous. The other four methods produce correct results in the Gauss case but fail to detect the correct scaling in the case of L\'{e}vy statistics.Comment: 21 pages,10 figures, 1 tabl

    Anomalous jumping in a double-well potential

    Get PDF
    Noise induced jumping between meta-stable states in a potential depends on the structure of the noise. For an α\alpha-stable noise, jumping triggered by single extreme events contributes to the transition probability. This is also called Levy flights and might be of importance in triggering sudden changes in geophysical flow and perhaps even climatic changes. The steady state statistics is also influenced by the noise structure leading to a non-Gibbs distribution for an α\alpha-stable noise.Comment: 11 pages, 7 figure

    Levy Flights in Inhomogeneous Media

    Full text link
    We investigate the impact of external periodic potentials on superdiffusive random walks known as Levy flights and show that even strongly superdiffusive transport is substantially affected by the external field. Unlike ordinary random walks, Levy flights are surprisingly sensitive to the shape of the potential while their asymptotic behavior ceases to depend on the Levy index μ\mu . Our analysis is based on a novel generalization of the Fokker-Planck equation suitable for systems in thermal equilibrium. Thus, the results presented are applicable to the large class of situations in which superdiffusion is caused by topological complexity, such as diffusion on folded polymers and scale-free networks.Comment: 4 pages, 4 figure

    Family of generalized random matrix ensembles

    Full text link
    Using the Generalized Maximium Entropy Principle based on the nonextensive q entropy a new family of random matrix ensembles is generated. This family unifies previous extensions of Random Matrix Theory and gives rise to an orthogonal invariant stable Levy ensemble with new statistical properties. Some of them are analytically derived.Comment: 13 pages and 2 figure

    From deterministic dynamics to kinetic phenomena

    Full text link
    We investigate a one-dimenisonal Hamiltonian system that describes a system of particles interacting through short-range repulsive potentials. Depending on the particle mean energy, ϵ\epsilon, the system demonstrates a spectrum of kinetic regimes, characterized by their transport properties ranging from ballistic motion to localized oscillations through anomalous diffusion regimes. We etsablish relationships between the observed kinetic regimes and the "thermodynamic" states of the system. The nature of heat conduction in the proposed model is discussed.Comment: 4 pages, 4 figure

    Finite Larmor radius effects on non-diffusive tracer transport in a zonal flow

    Full text link
    Finite Larmor radius (FLR) effects on non-diffusive transport in a prototypical zonal flow with drift waves are studied in the context of a simplified chaotic transport model. The model consists of a superposition of drift waves of the linearized Hasegawa-Mima equation and a zonal shear flow perpendicular to the density gradient. High frequency FLR effects are incorporated by gyroaveraging the ExB velocity. Transport in the direction of the density gradient is negligible and we therefore focus on transport parallel to the zonal flows. A prescribed asymmetry produces strongly asymmetric non- Gaussian PDFs of particle displacements, with L\'evy flights in one direction but not the other. For zero Larmor radius, a transition is observed in the scaling of the second moment of particle displacements. However, FLR effects seem to eliminate this transition. The PDFs of trapping and flight events show clear evidence of algebraic scaling with decay exponents depending on the value of the Larmor radii. The shape and spatio-temporal self-similar anomalous scaling of the PDFs of particle displacements are reproduced accurately with a neutral, asymmetric effective fractional diffusion model.Comment: 14 pages, 13 figures, submitted to Physics of Plasma
    corecore