17 research outputs found

    Octocoral Sexual Reproduction: Temporal Disparity Between Mesophotic and Shallow-Reef Populations

    Get PDF
    Mesophotic coral-reef ecosystems (MCEs) are light-dependent communities occurring at 30 to ∼150 m depth in the clear waters of tropical and sub-tropical regions. The extent to which MCEs and shallow benthic populations are connected, and whether coral sexual reproduction is maintained under the mesophotic environmental conditions, are still unclear. Despite the trend of increasing studies concerning the MCEs, the reproductive traits of MCE Indo-Pacific octocorals have remained uninvestigated to date. The current study engages with two common zooxanthellate octocorals in the northern Red Sea: the internal-brooder Ovabunda spp. and the surface-brooder Rhytisma fulvum fulvum. It addresses the hypothesis that, similar to their shallow-zone conspecifics, the upper mesophotic populations also reproduce sexually. We analyze the reproductive traits of tropical, upper mesophotic octocoral populations and compare them for the first time to the traits of their conspecifics on shallow reefs. In addition, we discuss the timing of surface-brooding events in relation to lunar phase and daily seawater temperature. The populations of Ovabunda spp. in the upper MCE and shallow-water display several similar reproductive traits (e.g., maximal gonad diameter and fecundity). Consequently, this species seems to be a successful depth-generalist. In contrast, the reproductive features of R. f. fulvum differ between the reefs in the upper MCE and in those shallow-water, with a decreased abundance of female colonies, lower fecundity, and a lower percentage of colonies exhibiting surface-brooding in the former. It thus seems that the R. f. fulvum population encounters certain constraints in the MCE that may, in turn, lead to its reduced reproductive performance there. In addition, surface-brooding events for R. f. fulvum in the upper-mesophotic zone and in shallow-water were separated by two weeks. Since a distinctive seawater temperature rise preceded each surface-brooding event, temperature regimes at different depths may present extrinsic cues that influence the timing of reproduction. The findings from this study contribute to our understanding of the life-history of mesophotic benthic inhabitants in general and of octocorals in particular. Overall, the current findings reinforce the viewpoint that the refuge potential of MCEs may be reflective of species-specific reproductive traits

    An Indo-Pacifc coral spawning database

    Get PDF
    The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology

    Coming of age: Annual onset of coral reproduction is determined by age rather than size

    No full text
    Summary: Constraints on organisms possessing a unitary body plan appear almost absent from colonial organisms. Like unitary organisms, however, coral colonies seemingly delay reproduction until reaching a critical size. Elucidating ontogenetic processes, such as puberty and aging are complicated by corals' modular design, where partial mortality and fragmentation lead to distortions in colony size-age relationships. We explored these enigmatic relations and their influence on reproduction by fragmenting sexually mature colonies of five coral species into sizes below the known size at first reproduction, nurturing them for prolonged periods, and examining their reproductive capacity and trade-offs between growth rates and reproductive investment. Most fragments were reproductive regardless of their size, and growth rates hardly affected reproduction. Our findings suggest that once the ontogenetic milestone of puberty is reached, corals retain reproductive capacity irrespective of colony size, highlighting the key role that aging may have in colonial animals, which are commonly considered non-aging

    Repetitive sex change in the stony coral Herpolitha limax across a wide geographic range

    Get PDF
    Sex change has been widely studied in animals and plants. However, the conditions favoring sex change, its mode and timing remain poorly known. Here, for the first time in stony corals, we report on a protandrous (youngest individuals are males) repetitive sex change exhibited by the fungiid coral Herpolitha limax across large spatial scales (the coral reefs of Japan, Jordan and Israel) and temporal scales (2004–2017). In contrast to most corals, this species is a daytime spawner (08:00–10:00 AM) that spawned at the same time/same date across all the study sites. The sporadically scattered populations of H. limax among the coral reefs of Eilat (Israel) and Aqaba (Jordan) exhibited significantly slower growth, earlier sex change, and lower percentages of reproduction and sex change in comparison to the densely aggregated populations in Okinawa (Japan). At all sites, sex ratio varied among years, but was almost always biased towards maleness. Growth rate decreased with size. We conclude that comparable to dioecious plants that display labile sexuality in response to energetic and/or environmental constraints, the repetitive sex change displayed by H. limax increases its overall fitness reinforcing the important role of reproductive plasticity in the Phylum Cnidaria in determining their evolutionary success

    pH variability at volcanic CO2 seeps regulates coral calcifying fluid chemistry

    No full text
    Coral reefs are iconic ecosystems with immense ecological, economic and cultural value, but globally their carbonate-based skeletal construction is threatened by ocean acidification (OA). Identifying coral species that have specialised mechanisms to maintain high rates of calcification in the face of declining seawater pH is of paramount importance in predicting future species composition, and growth of coral reefs. Here, we studied multiple coral species from two distinct volcanic CO2 seeps in Papua New Guinea to assess their capacity to control their calcifying fluid (CF) chemistry. Several coral species living under conditions of low mean seawater pH, but with either low or high variability in seawater pH, were examined and compared with those living in ‘normal’ (non-seep) ambient seawater pH. We show that when mean seawater pH is low but highly variable, corals have a greater ability to maintain constant pHcf in their CF, but this characteristic was not linked with changes in abundance. Within less variable low pH seawater, corals with limited reductions in pHcf at the seep sites compared with controls tended to be more abundant at the seep site than at the control site. However, this finding was strongly influenced by a single species (Montipora foliosa), which was able to maintain complete pHcf homeostasis. Overall, although our findings indicate that there might be an association between ecological success and greater pHcf homeostasis, further research with additional species and at more sites with differing seawater pH regimes is required to solidify inferences regarding coral ecological success under future OA

    Biogeography, reproductive biology and phylogenetic divergence within the Fungiidae (mushroom corals)

    No full text
    While the escalating impacts of climate change and other anthropogenic pressures on coral reefs are well documented at the coral community level, studies of species-specific trends are less common, owing mostly to the difficulties and uncertainties in delineating coral species. It has also become clear that traditional coral taxonomy based largely on skeletal macromorphology has underestimated the diversity of many coral families. Here, we use targeted enrichment methods to sequence 2476 ultraconserved elements (UCEs) and exonic loci to investigate the relationship between populations of Fungia fungites from Okinawa, Japan, where this species reproduces by brooding (i.e., internal fertilization), and Papua New Guinea and Australia, where it reproduces by broadcast-spawning (i.e., external fertilization). Moreover, we analyzed the relationships between populations of additional fungiid species (Herpolitha limax and Ctenactis spp.) that reproduce only by broadcast-spawning. Our phylogenetic and species delimitation analyses reveal strong biogeographic structuring in both F. fungites and Herpolitha limax, consistent with cryptic speciation in Okinawa in both species and additionally for H. limax in the Red Sea. By combining UCE/exon data and mitochondrial sequences captured in off-target reads, we reinforce earlier findings that Ctenactis, a genus consisting of three nominal morphospecies, is not a natural group. Our results highlight the need for taxonomic and systematic re-evaluations of some species and genera within the family Fungiidae. This work demonstrates that sequence data generated by the application of targeted capture methods can provide objective criteria by which we can test phylogenetic hypotheses based on morphological and/or life history traits

    An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea

    No full text
    Fire corals of the hydrocoral genus Millepora provide an important ecological role as framework builders of coral reefs in the Indo-Pacific and the Atlantic. Recent works have demonstrated the incongruence between molecular data and the traditional taxonomy of Millepora spp. based on overall skeleton growth form and pores. In an attempt to establish a reliable and standardized approach for defining species boundaries in Millepora, we focused on those from the Red Sea. In this region, three species are currently recognized: the fan-shaped branching M. dichotoma, the blade-like M. platyphylla, and the massive/encrusting M. exaesa. A total of 412 colonies were collected from six localities. Two mitochondrial marker genes (COI and 16S rDNA) were sequenced to obtain phylogeny reconstructions and haplotype networks. Eight morphological traits of pores and the nematocysts of both polyp and eumedusoid stages were measured to determine whether significant morphological differences occur among the three species. Both markers clearly resolved M. dichotoma, M. platyphylla, and M. exaesa as distinct, monophyletic lineages in the Red Sea. Nevertheless, they also revealed deep genetic breaks with Southwestern Indian Ocean populations of the three species. In the Red Sea, the three species were further distinguished based on their pore and nematocyst features. A discriminant analysis revealed dactylopore density, number of dactylopores per gastropore, dactylopore distance, and gastropore diameter as the most informative discriminative characters. The heteronemes, the large and small stenoteles of polyps, and the distribution of mastigophores of eumedusoids also showed significant interspecific differences. An integrated morpho-molecular approach proved to be decisive in defining species boundaries of Millepora supported by a combination of pore and nematocyst characters, which may be phylogenetically informative
    corecore