3 research outputs found

    Photocatalytic removal of benzene over Ti3C2Tx MXene and TiO2–MXene composite materials under solar and NIR irradiation

    Get PDF
    MXenes, a family of two-dimensional (2D) transition metal carbides, nitrides and carbonitrides based on earth-abundant constituents, are prospective candidates for energy conversion applications, including photocatalysis. While the activity of individual MXenes towards various photocatalytic processes is still debatable, these materials were proved to be excellent co-catalysts, accelerating the charge separation and suppressing the exciton recombination. Titanium-containing MXenes are well compatible with the classical TiO2 photocatalyst. The TiO2 component can be directly grown on MXene sheets by in situ oxidation, representing a mainstream processing approach for such composites. In this study, an essentially different approach has been implemented: a series of TiO2-MXene composite materials with controlled composition and both reference end members were prepared, involving two different strategies for mixing sol-gel-derived TiO2 nanopowder with the Ti3C2Tx component, which was obtained by HF etching of self-propagating high-temperature synthesis products containing modified MAX phase Ti3C2Alz (z > 1) with nominal aluminium excess. The prospects of such composites for the degradation of organic pollutants under simulated solar light, using benzene as a model system, were demonstrated and analysed in combination with their structural, microstructural and optical properties. A notable photocatalytic activity of bare MXene under near infrared light was discovered, suggesting further prospects for light-to-energy harvesting spanning from UV-A to NIR and applications in biomedical imaging and sensors.publishe

    MXene-containing composite electrodes for hydrogen evolution: material design aspects and approaches for electrode fabrication

    Get PDF
    This work explores the possibilities for the processing of Ni- and Ti3C2Tx (T = OH, O) MXene-containing composite electrodes, by co-pressing and plastic deformation or by etching of the electrodes prepared directly by self-propagation high-temperature synthesis (SHS). Various material design approaches were also explored. In order to tune the Ti3C2 interlayer distance in Ti3C2Al MAX phase, an introduction of additional Al to form Ti3C2Alz materials with z > 1 was attempted. Self-propagation high-temperature synthesis of powder mixtures with extra Ni and Al content (e.g. Ni:Ti:Al:C = 1:2:3:1) resulted in SHS products containing Ti3C2Alz z > 1 material and Ni–Al alloys. Further etching of these products in 10M NaOH allowed the direct formation of electrodes with active surface containing Ti3C2Tx (T = OH, O) MXene- and Raney nickel-containing composites. The electrochemical studies were focused on hydrogen evolution and showed the potential for boosting the electrochemical reaction in Ni and MXene-containing composite electrodes, especially at high current densities. The guidelines for the processing of such electrodes under fluorine-free conditions are proposed and discussed.publishe

    Erratum: Photocatalytic removal of benzene over Ti3C2Tx MXene and TiO2-MXene composite materials under solar and NIR irradiation (J. Mater. Chem. C (2022) 10 (626–639) DOI: 10.1039/D1TC03826E)

    No full text
    Corrección del artículo: Photocatalytic removal of benzene over Ti3C2T: XMXene and TiO2-MXene composite materials under solar and NIR irradiation. Journal of Materials Chemistry C, Volume 10, Issue 2, Pages 626 - 639, 14 January 2022The authors regret the omission of the following two sentences from the Acknowledgements section of the published article: Gabriel Constantinescu acknowledges the support of the TEOsINTE project (Grant agreement ID: 101003375), funded under the H2020-EU.4.Programmes (Funding Scheme: MSCA-IF-EF-ST – Standard EF). This project has received funding from the European Union’s Horizon 2020 research and innovation programme. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and reader.1 página
    corecore