54 research outputs found

    A novel method for in vivo measurement of dynamic ischiofemoral space based on MRI and motion capture

    Get PDF
    Purpose: To use a novel in vivo method to simulate a moving hip model. Then, measure the dynamic bone-to-bone distance, and analyze the ischiofemoral space (IFS) of patients diagnosed with ischiofemoral impingement syndrome (IFI) during dynamic activities.Methods: Nine healthy subjects and 9 patients with IFI were recruited to collect MRI images and motion capture data. The motion trail of the hip during motion capture was matched to a personalized 3D hip model reconstructed from MRI images to get a dynamic bone model. This personalized dynamic in vivo method was then used to simulate the bone motion in dynamic activities. Validation was conducted on a 3D-printed sphere by comparing the calculated data using this novel method with the actual measured moving data using motion capture. Moreover, the novel method was used to analyze the in vivo dynamic IFS between healthy subjects and IFI patients during normal and long stride walking.Results: The validation results show that the root mean square error (RMSE) of slide and rotation was 1.42 mm/1.84° and 1.58 mm/2.19°, respectively. During normal walking, the in vivo dynamic IFS was significantly larger in healthy hips (ranged between 15.09 and 50.24 mm) compared with affected hips (between 10.16 and 39.74 mm) in 40.27%–83.81% of the gait cycle (p = 0.027). During long stride walking, the in vivo dynamic IFS was also significantly larger in healthy hips (ranged between 13.02 and 51.99 mm) than affected hips (between 9.63 and 44.22 mm) in 0%–5.85% of the gait cycle (p = 0.049). Additionally, the IFS of normal walking was significantly smaller than long stride walking during 0%–14.05% and 85.07%–100% of the gait cycle (p = 0.033, 0.033) in healthy hips. However, there was no difference between the two methods of walking among the patients.Conclusions: This study established a novel in vivo method to measure the dynamic bone-to-bone distance and was well validated. This method was used to measure the IFS of patients diagnosed with IFI, and the results showed that the IFS of patients is smaller compared with healthy subjects, whether in normal or long stride walking. Meanwhile, IFI eliminated the difference between normal and long stride walking

    Mice Deficient in Cyp4a14 Have An Increased Number of Goblet Cells and Attenuated Dextran Sulfate Sodium-Induced Colitis

    Get PDF
    Background/Aims: Cyp4a14 is a member of cytochrome P450 (Cyp450) enzyme superfamily that possesses NADPH monooxygenase activity, which catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid. Study suggests that down-regulation of Cyp4a14 has an anti-inflammatory response in intestine. The present study was to test the function of Cyp4a14 in dextran sulfate sodium (DSS)-induced colitis. Methods: Female Cyp4a14-knockout (KO) and wild-type (WT) mice were treated with DSS for 6 days to induce colitis. The colon of mice was histologically observed by hematoxylin and eosin (H&E) and periodic acid Schiff (PAS) staining. The serum malondialdehyde (MDA), an endogenous indicator of oxidative stress, was chemically measured. Proinflammatory and NADPH oxidase genes were examined by quantitative polymerase chain reaction (qPCR). Results: Cyp4a14-KO mice had a significantly higher number of goblet cells in the colon and were more resistant to DSS-induced colitis compared with the WT mice. The DSS-treated KO mice had lower levels of MDA. Consistent with the milder inflammatory pathological changes, DSS-treated KO mice had lower levels of IL-1β, IL-6 and TNF-α mRNA in the liver and the colon. Moreover, the colon of DSS-treated Cyp4a14-KO and WT mice had higher mRNA levels of two members of NADPH oxidases, Nox2 and Nox4, suggesting that both Nox2 and Nox4 are inflammatory markers. By contrast, DSS-treated WT and KO mice had drastically decreased epithelium-localized Nox1 and dual oxidase (Duox) 2 mRNA levels, coinciding with the erosion of the mucosa induced by DSS. Conclusion: These results suggests a hypothesis that the increased goblet cell in the colon of Cyp4a14-KO mice provides protection from mucosal injury and Cyp4a14-increased oxidative stress exacerbates DSS-induced colitis. Therefore, Cyp4a14 may represent a potential target for treating colitis

    Molecular epidemiological characteristics of Mycobacterium leprae in highly endemic areas of China during the COVID-19 epidemic

    Get PDF
    ObjectivesThe present study analyzed the impact of the COVID-19 pandemic on the prevalence and incidence of new leprosy cases, as well as the diversity, distribution, and temporal transmission of Mycobacterium leprae strains at the county level in leprae-endemic provinces in Southwest China.MethodsA total of 219 new leprosy cases during two periods, 2018–2019 and 2020–2021, were compared. We genetically characterized 83 clinical isolates of M. leprae in Guizhou using variable number tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). The obtained genetic profiles and cluster consequences of M. leprae were compared between the two periods.ResultsThere was an 18.97% decrease in the number of counties and districts reporting cases. Considering the initial months (January–March) of virus emergence, the number of new cases in 2021 increased by 167% compared to 2020. The number of patients with a delay of >12 months before COVID-19 (63.56%) was significantly higher than that during COVID-19 (48.51%). Eighty-one clinical isolates (97.60%) were positive for all 17 VNTR types, whereas two (2.40%) clinical isolates were positive for 16 VNTR types. The (GTA)9, (TA)18, (TTC)21 and (TA)10 loci showed higher polymorphism than the other loci. The VNTR profile of these clinical isolates generated five clusters, among which the counties where the patients were located were adjacent or relatively close to each other. SNP typing revealed that all clinical isolates possessed the single SNP3K.ConclusionCOVID-19 may have a negative/imbalanced impact on the prevention and control measures of leprosy, which could be a considerable fact for official health departments. Isolates formed clusters among counties in Guizhou, indicating that the transmission chain remained during the epidemic and was less influenced by COVID-19 preventative policies

    When Extra-Role Behavior Leads to Employee Security Deviance: A Moral Licensing View

    No full text
    Recently, there has been increasing interest in studying desirable employee security behaviors, including extra-role behavior in particular. The literature has predominantly focused on the benefits of extra-role behavior for organizational information security policy effectiveness. However, the negative outcomes of extra-role behavior have long been neglected. Therefore, drawing on the moral licensing theory, we investigate when extra-role behavior leads to employee security deviance. Specially, we see resource misuse and security carelessness as necessary forms of employee security deviance and proposes that extra-role behavior might lead to employee security deviance through psychological entitlement. This paper provides essential contributions for future security research, which aims to investigate the dark side of desirable security behavior

    Micro Magnetic Field Produced by Fe3O4 Nanoparticles in Bone Scaffold for Enhancing Cellular Activity

    No full text
    The low cellular activity of poly-l-lactic acid (PLLA) limits its application in bone scaffold, although PLLA has advantages in terms of good biocompatibility and easy processing. In this study, superparamagnetic Fe3O4 nanoparticles were incorporated into the PLLA bone scaffold prepared by selective laser sintering (SLS) for continuously and steadily enhancing cellular activity. In the scaffold, each Fe3O4 nanoparticle was a single magnetic domain without a domain wall, providing a micro-magnetic source to generate a tiny magnetic field, thereby continuously and steadily generating magnetic stimulation to cells. The results showed that the magnetic scaffold exhibited superparamagnetism and its saturation magnetization reached a maximum value of 6.1 emu/g. It promoted the attachment, diffusion, and interaction of MG63 cells, and increased the activity of alkaline phosphatase, thus promoting the cell proliferation and differentiation. Meanwhile, the scaffold with 7% Fe3O4 presented increased compressive strength, modulus, and Vickers hardness by 63.4%, 78.9%, and 19.1% compared with the PLLA scaffold, respectively, due to the addition of Fe3O4 nanoparticles, which act as a nanoscale reinforcement in the polymer matrix. All these positive results suggested that the PLLA/Fe3O4 scaffold with good magnetic properties is of great potential for bone tissue engineering applications

    Effects of IGF-1 on the Three-Dimensional Culture of Ovarian Preantral Follicles and Superovulation Rates in Mice

    No full text
    Insulin-like growth factor-1 (IGF-1) plays a crucial role during folliculogenesis, which has been demonstrated by previous research. However, the optimal IGF-1 dosage in the three-dimensional (3D) culture system is unknown. Mouse secondary follicles (140–150 µm) were cultured for 6 days within an alginate bead in a medium supplemented with 0 (G0), 5 ng/mL (G5), 10 ng/mL (G10), or 50 ng/mL IGF-1 (G50). Secretions of 17β-estradiol and progesterone were significantly increased in G10 and G50 (p < 0.05). However, G50 significantly inhibited follicular growth (p < 0.05), while G10 showed a higher oocyte maturation rate. Thus, the 10 ng/mL IGF-1 was used in subsequent experiments. IGF-1 enhanced the function of granulosa cells (GCs) by upregulating expressions of Star, Cyp19a1, Hsd3b1, Fshr, and Lhcgr. Oocyte secretory function was promoted by upregulating expressions of Bmp-15, Gdf-9, and Fgf-8. Addition of IGF-1 showed anti-apoptotic effect. However, G10 did not improve fertilization rate of MII oocytes compared to G0. In an intraperitoneal injection experiment in mice, IGF-1 significantly increased the number of ovulated oocytes (p < 0.05). In conclusion, 10 ng/mL IGF-1 can promote the production of mature oocytes in the 3D culture medium and injection of IGF-1 before superovulation increases the number of ovulated oocytes
    • …
    corecore