78 research outputs found

    Duodenum-preserving pancreatic head resection compared to pancreaticoduodenectomy: A systematic review and network meta-analysis of surgical outcomes

    Get PDF
    ObjectivesIn this systemic review and network meta-analysis, we investigated pancreaticoduodenectomy (PD), pylorus-preserving pancreaticoduodenectomy (PPPD), and different modifications of duodenum-preserving pancreatic head resection (DPPHR) to evaluate the efficacy of different surgical procedures.MethodsA systemic search of six databases was conducted to identify studies comparing PD, PPPD, and DPPHR for treating pancreatic head benign and low-grade malignant lesions. Meta-analyses and network meta-analyses were performed to compare different surgical procedures.ResultsA total of 44 studies were enrolled in the final synthesis. Three categories of a total of 29 indexes were investigated. The DPPHR group had better working ability, physical status, less loss of body weight, and less postoperative discomfort than the Whipple group, while both groups had no differences in quality of life (QoL), pain scale scores, and other 11 indexes. Network meta-analysis of a single procedure found that DPPHR had a larger probability of best performance in seven of eight analyzed indexes than PD or PPPD.ConclusionDPPHR and PD/PPPD have equal effects on improving QoL and pain relief, while PD/PPPD has more severe symptoms and more complications after surgery. PD, PPPD, and DPPHR procedures exhibit different strengths in treating pancreatic head benign and low-grade malignant lesions.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/, identifier: CRD42022342427

    Development and biodistribution of trans-resveratrol loaded chitosan nanoparticles with free amino groups

    Get PDF
    The conventional method for preparing chitosan nanoparticles (CS-NPs) leads to the surface amino groups protonated and unable to link other useful moieties. In this study, we optimized the method of sodium chloride precipitation our lab established before to produce CS-NPs with surface free amino groups. The effects of preparation conditions on the size and encapsulation efficiency were examined. As surface amino groups may exert special effect on the NPs biodistribution, in vivo distribution was investigated after intravenous administration to the mice. The optimized CS-NPs were round with the mean diameter of 257 ± 21 nm. Compared with trans-resveratrol solution, the CS-NPs had longer circulation time in vivo. The AUC of CS-NPs in liver was 2.29 fold AUC of the solution. This study demonstrates that not only can the unique CS-NPs be modified to obtain active targeting systems, they are also an excellent candidate for liver targeting treatment.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    An increased abundance of tumor-infiltrating regulatory t cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma

    Get PDF
    CD4+CD25+Foxp3+ regulatory T cells (Tregs) can inhibit cytotoxic responses. Though several studies have analyzed Treg frequency in the peripheral blood mononuclear cells (PBMCs) of pancreatic ductal adenocarcinoma (PDA) patients using flow cytometry (FCM), few studies have examined how intratumoral Tregs might contribute to immunosuppression in the tumor microenvironment. Thus, the potential role of intratumoral Tregs in PDA patients remains to be elucidated. In this study, we found that the percentages of Tregs, CD4+ T cells and CD8+ T cells were all increased significantly in tumor tissue compared to control pancreatic tissue, as assessed via FCM, whereas the percentages of these cell types in PBMCs did not differ between PDA patients and healthy volunteers. The percentages of CD8 + T cells in tumors were significantly lower than in PDA patient PBMCs. In addition, the relative numbers of CD4+CD25+Foxp3+ Tregs and CD8+ T cells were negatively correlated in the tissue of PDA patients, and the abundance of Tregs was significantly correlated with tumor differentiation. Additionally, Foxp3+ T cells were observed more frequently in juxtatumoral stroma (immediately adjacent to the tumor epithelial cells). Patients showing an increased prevalence of Foxp3+ T cells had a poorer prognosis, which was an independent factor for patient survival. These results suggest that Tregs may promote PDA progression by inhibiting the antitumor immunity of CD8+ T cells at local intratumoral sites. Moreover, a high proportion of Tregs in tumor tissues may reflect suppressed antitumor immunity. Copyright: © 2014 Tang et al

    Cassava genome from a wild ancestor to cultivated varieties

    Get PDF
    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology

    microRNA based prognostic biomarkers in pancreatic Cancer

    No full text
    Abstract Despite tremendous research efforts focused on diagnosis and treatment, pancreatic ductal adenocarcinoma remains the third leading cause of cancer-related death in the United States, with a 5-year overall survival rate of less than 5%. Although resistance is rather complex, emerging evidence has demonstrated that epigenetic alterations (e.g. miRNA) have important roles in PDAC progression as well as resistance to therapy. Certain miRNAs have been identified as potential prognostic biomarkers in PDAC. In this review, we summarize the recent developments in miRNA research related to PDAC therapeutic resistance mechanisms and the potential of miRNAs as prognostic biomarkers for future clinical management of PDAC

    DreamSparse: Escaping from Plato's Cave with 2D Diffusion Model Given Sparse Views

    Full text link
    Synthesizing novel view images from a few views is a challenging but practical problem. Existing methods often struggle with producing high-quality results or necessitate per-object optimization in such few-view settings due to the insufficient information provided. In this work, we explore leveraging the strong 2D priors in pre-trained diffusion models for synthesizing novel view images. 2D diffusion models, nevertheless, lack 3D awareness, leading to distorted image synthesis and compromising the identity. To address these problems, we propose DreamSparse, a framework that enables the frozen pre-trained diffusion model to generate geometry and identity-consistent novel view image. Specifically, DreamSparse incorporates a geometry module designed to capture 3D features from sparse views as a 3D prior. Subsequently, a spatial guidance model is introduced to convert these 3D feature maps into spatial information for the generative process. This information is then used to guide the pre-trained diffusion model, enabling it to generate geometrically consistent images without tuning it. Leveraging the strong image priors in the pre-trained diffusion models, DreamSparse is capable of synthesizing high-quality novel views for both object and scene-level images and generalising to open-set images. Experimental results demonstrate that our framework can effectively synthesize novel view images from sparse views and outperforms baselines in both trained and open-set category images. More results can be found on our project page: https://sites.google.com/view/dreamsparse-webpage

    A novel hierarchical selective ensemble classifier with bioinformatics application

    No full text
    Selective ensemble learning is a technique that selects a subset of diverse and accurate basic models in order to generate stronger generalization ability. In this paper, we proposed a novel learning algorithm that is based on parallel optimization and hierarchical selection (PTHS). Our novel feature selection method is based on maximize the sum of relevance and distance (MSRD) for solving the problem of high dimensionality. Specifically, we have a PTHS algorithm that employs parallel optimization and candidate model pruning based on k-means and a hierarchical selection framework. We combine the prediction result of each basic model by majority voting, which employs the divide-and-conquer strategy to save computing time. In addition, the PT algorithm is capable to transform a multi-class problem into a binary classification problem, and thereby allowing our ensemble model to address multi-class problems. Empirical study shows that MSRD is efficient in solving the high dimensionality problem, and PTHS exhibits better performance than the other existing classification algorithms. Most importantly, our classifier achieved high-level performance on several bioinformatics problems (e.g. tRNA identification, and protein-protein interaction prediction, etc.), demonstrating efficiency and robustness

    A Novel Multi-Input AlexNet Prediction Model for Oil and Gas Production

    No full text
    In the process of oilfield development, it is important to predict the oil and gas production. The predicted value of oil production is the amount of oil that may be obtained within a certain area over a certain period. Because of the current demand for oil and gas production prediction, a prediction model using a multi-input convolutional neural network based on AlexNet is proposed in this paper. The model predicts real oilfield data and achieves good results: increasing prediction accuracy by 17.5%, 20.8%, 11.6%, 8.9%, 6.9%, and 14.9% with respect to the backpropagation neural network, support vector machine, artificial neural network, radial basis function neural network, K-nearest neighbor, and decision tree methods, respectively. It addresses the uncertainty of oil and gas production caused by the change in parameter values during the process of petroleum exploitation and has far-reaching application significance

    Novel ASK1 inhibitor AGI‐1067 improves AGE‐induced cardiac dysfunction by inhibiting MKKs/p38 MAPK and NF‐ÎșB apoptotic signaling

    No full text
    Heart failure has been identified as one of the clinical manifestations of diabetic cardiovascular complications. Excessive myocardium apoptosis characterizes cardiac dysfunctions, which are correlated with an increased level of advanced glycation end products (AGEs). In this study, we investigated the participation of reactive oxygen species (ROS) and the involvements of apoptosis signal‐regulating kinase 1 (ASK1)/mitogen‐activated protein kinase (MAPK) kinases (MKKs)/p38 MAPK and nuclear factor ÎșB (NF‐ÎșB) pathways in AGE‐induced apoptosis‐mediated cardiac dysfunctions. The antioxidant and therapeutic effects of a novel ASK1 inhibitor, AGI‐1067, were also studied. Myocardium and isolated primary myocytes were exposed to AGEs and treated with AGI‐1067. Invasive hemodynamic and echocardiographic assessments were used to evaluate the cardiac functions. ROS formation was evaluated by dihydroethidium fluorescence staining. A terminal deoxynucleotidyl transferase dUTP nick end labelling assay was used to detect the apoptotic cells. ASK1 and NADPH activities were determined by kinase assays. The association between ASK1 and thioredoxin 1 (Trx1) was assessed by immunoprecipitation. Western blotting was used to evaluate the phosphorylation and expression levels of proteins. Our results showed that AGE exposure significantly activated ASK1/MKKs/p38 MAPK, which led to increased cardiac apoptosis and cardiac impairments. AGI‐1067 administration inhibited the activation of MKKs/p38 MAPK by inhibiting the disassociation of ASK1 and Trx1, which suppressed the AGE‐induced myocyte apoptosis. Moreover, the NF‐ÎșB activation as well as the ROS generation was inhibited. As a result, cardiac functions were improved. Our findings suggested that AGI‐1067 recovered AGE‐induced cardiac dysfunction by blocking both ASK1/MKKs/p38 and NF‐ÎșB apoptotic signaling pathways
    • 

    corecore