339 research outputs found
Neuraxial modulation for treatment of VT storm.
In the hyperadrenergic state of VT storm where shocks are psychologically and physiologically traumatizing, suppression of sympathetic outflow from the organ level of the heart up to higher braincenters plays a significant role in reducing the propensity for VT recurrence. The autonomic nervous system continuously receives input from the heart (afferent signaling), integrates them, and sends efferent signals to modify or maintain cardiac function and arrhythmogenesis. Spinal anesthesia with thoracic epidural infusion of bupivicaine and surgical removal of the sympathetic chain including the stellate ganglion has been shown to decrease recurrences of VT. Excess sympathetic outflow with catecholamine release can be modified with catheter-based renal denervation. The insights provided from animal experiments and in patients that are refractory to conventional therapy have significantly improved our working understanding of the heart as an end organ in the autonomic nervous system
Ablation of Post Transplant Atrial Flutter and Pseudo-fibrillation Using Magnetic Navigation via a Superior Approach.
Ablation of cavotricuspid ishtmus flutter and atrial tachycardia in a complex substrate has never been reported using remote navigation via superior approach. Venous access was obtained via right internal jugular for ablation and left subclavian for duodecapolar catheter placement into the coronary sinus. In a posttransplant patient presenting with both regular and irregular tachycardia, both cavotricuspid isthmus flutter in the donor and atrial tachycardia in the recipient was mapped using a two catheter approach. Successful ablation of typical atrial flutter and anastomotic block was achieved. This is the first report of successful ablation of cavotricuspid isthmus flutter and posttransplant atrial tachycardia using magnetic navigation via superior approach. Using only two catheters, this approach is logical and feasible in complex substrates with interrupted inferior venous access
Detecting and monitoring arrhythmia recurrence following catheter ablation of atrial fibrillation.
Atrial fibrillation (AF) is the most common arrhythmia prompting clinical presentation, is associated with significant morbidity and mortality. The incidence and prevalence of this arrhythmia is expected to grow significantly in the coming decades. Of the available pharmacologic and non-pharmacologic treatment options, the fastest growing and most intensely studied is catheter-based ablation therapy for AF. Given the varying success rates for AF ablation, the increasingly complex factors that need to be taken into account when deciding to proceed with ablation, as well as varying definitions of procedural success, accurate detection of arrhythmia recurrence and its burden is of significance. Detecting and monitoring AF recurrence following catheter ablation is therefore an important consideration. Multiple studies have demonstrated the close relationship between the intensity of rhythm monitoring with wearable ambulatory cardiac monitors, or implantable cardiac rhythm monitors and the detection of arrhythmia recurrence. Other studies have employed algorithms dependent on intensive monitoring and arrhythmia detection in the decision tree on whether to proceed with repeat ablation or medical therapy. In this review, we discuss these considerations, types of monitoring devices, and implications for monitoring AF recurrence following catheter ablation
On the emergence of the CDM model from self-interacting Brans-Dicke theory in
We investigate whether a self-interacting Brans-Dicke theory in without
matter and with a time-dependent metric can describe, after dimensional
reduction to , the FLRW model with accelerated expansion and
non-relativistic matter. By rewriting the effective 4-dimensional theory as an
autonomous three-dimensional dynamical system and studying its critical points,
we show that the CDM cosmology cannot emerge from such a model. This
result suggests that a richer structure in may be needed to obtain the
accelerated expansion as well as the matter content of the 4-dimensional
universe.Comment: 7 pages, 7 figure
Coupling Interval Variability Differentiates Ventricular Ectopic Complexes Arising in the Aortic Sinus of Valsalva and Great Cardiac Vein From Other Sources
Objectives
The objective of this study was to determine whether premature ventricular contractions (PVCs) arising from the aortic sinuses of Valsalva (SOV) and great cardiac vein (GCV) have coupling interval (CI) characteristics that differentiate them from other ectopic foci.
Background
PVCs occur at relatively fixed CI from the preceding normal QRS complex in most patients. However, we observed patients with PVCs originating in unusual areas (SOV and GCV) in whom the PVC CI was highly variable. We hypothesized that PVCs from these areas occur seemingly randomly because of the lack of electrotonic effects of the surrounding myocardium.
Methods
Seventy-three consecutive patients referred for PVC ablation were assessed. Twelve consecutive PVC CIs were recorded. The ΔCI (maximum – minimum CI) was measured.
Results
We studied 73 patients (age 50 ± 16 years, 47% male). The PVC origin was right ventricular (RV) in 29 (40%), left ventricular (LV) in 17 (23%), SOV in 21 (29%), and GCV in 6 (8%). There was a significant difference between the mean ΔCI of RV/LV PVCs compared with SOV/GCV PVCs (33 ± 15 ms vs. 116 ± 52 ms, p 60 ms demonstrated a sensitivity of 89%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 94%. Cardiac events were more common in the SOV/GCV group versus the RV/LV group (7 of 27 [26%] vs. 2 of 46 [4%], p < 0.02).
Conclusions
ΔCI is more pronounced in PVCs originating from the SOV or GCV. A ΔCI of 60 ms helps discriminate the origin of PVCs before diagnostic electrophysiological study and may be associated with increased frequency of cardiac events
RNA Sequencing Reveals Novel Transcripts from Sympathetic Stellate Ganglia During Cardiac Sympathetic Hyperactivity.
Cardiovascular disease is the most prevalent age-related illness worldwide, causing approximately 15 million deaths every year. Hypertension is central in determining cardiovascular risk and is a strong predictive indicator of morbidity and mortality; however, there remains an unmet clinical need for disease-modifying and prophylactic interventions. Enhanced sympathetic activity is a well-established contributor to the pathophysiology of hypertension, however the cellular and molecular changes that increase sympathetic neurotransmission are not known. The aim of this study was to identify key changes in the transcriptome in normotensive and spontaneously hypertensive rats. We validated 15 of our top-scoring genes using qRT-PCR, and network and enrichment analyses suggest that glutamatergic signalling plays a key role in modulating Ca2+ balance within these ganglia. Additionally, phosphodiesterase activity was found to be altered in stellates obtained from the hypertensive rat, suggesting that impaired cyclic nucleotide signalling may contribute to disturbed Ca2+ homeostasis and sympathetic hyperactivity in hypertension. We have also confirmed the presence of these transcripts in human donor stellate samples, suggesting that key genes coupled to neurotransmission are conserved. The data described here may provide novel targets for future interventions aimed at treating sympathetic hyperactivity associated with cardiovascular disease and other dysautonomias
Recommended from our members
Increased baseline ECG R-R dispersion predicts improvement in systolic function after atrial fibrillation ablation.
BackgroundAtrial fibrillation (AF) is associated with left ventricular (LV) systolic dysfunction which may improve after AF ablation. We hypothesised that increased ventricular irregularity, as measured by R-R dispersion on the baseline ECG, would predict improvement in the left ventricular ejection fraction (LVEF) after AF ablation.MethodsPatients with LVEF <50% at two US centres (2007-2016), having both a preablation and postablation echocardiogram or cardiac MRI, were included. LVEF improvement was defined as absolute increase in LVEF by >7.5%. Multivariable logistic regression (restricted to echocardiographic/ECG variables) was performed to evaluate predictors of LVEF improvement.ResultsFifty-two patients were included in this study. LVEF improved in 30 patients (58%) and was unchanged/worsened in 22 patients (42%). Those with versus without LVEF improvement had an increased baseline R-R dispersion (645±155 ms vs 537±154 ms, p=0.02, respectively). The average baseline heart rate in all patients was 93 beats per minute. After multivariable logistic regression, increased R-R dispersion (OR 1.59, 95% CI 1.00 to 2.55, p=0.03) predicted LVEF improvement.ConclusionsIncreased R-R dispersion on ECG was independently associated with improved systolic function after AF ablation. This broadens the existing knowledge of arrhythmia-induced cardiomyopathy, demonstrating that irregular electrical activation (as measured by increased R-R dispersion on ECG) is associated with a cardiomyopathy capable of improving after AF ablation
- …