310 research outputs found

    Investigating Hα, UV, and IR Star-formation Rate Diagnostics for a Large Sample of z ~ 2 Galaxies

    Get PDF
    We use a sample of 262 spectroscopically confirmed star-forming galaxies at redshifts 2.08 ≤ z ≤ 2.51 to compare Hα, ultraviolet (UV), and IR star formation rate (SFR) diagnostics and to investigate the dust properties of the galaxies. At these redshifts, the Hα line shifts to the K_s band. By comparing K_s-band photometry to underlying stellar population model fits to other UV, optical, and near-infrared data, we infer the Hα flux for each galaxy. We obtain the best agreement between Hα- and UV-based SFRs if we assume that the ionized gas and stellar continuum are reddened by the same value and that the Calzetti attenuation curve is applied to both. Aided with MIPS 24 μm data, we find that an attenuation curve steeper than the Calzetti curve is needed to reproduce the observed IR/UV ratios of galaxies younger than 100 Myr. Furthermore, using the bolometric SFR inferred from the UV and mid-IR data (SFR_(IR)+SFR_(UV), we calculated the conversion between the Hα luminosity and SFR to be (7.5 ± 1.3) x 10^(-42) for a Salpeter initial mass function, which is consistent with the Kennicutt conversion. The derived conversion factor is independent of any assumption of the dust correction and is robust to stellar population model uncertainties

    Spectroscopic study of star-forming galaxies in filaments and the field at z∼z\sim0.5:evidence for environmental dependence of electron density

    Get PDF
    We study the physical properties of a spectroscopic sample of 28 star-forming galaxies in a large filamentary structure in the COSMOS field at z∼z\sim0.53, with spectroscopic data taken with the Keck/DEIMOS spectrograph, and compare them with a control sample of 30 field galaxies. We spectroscopically confirm the presence of a large galaxy filament (∼\sim 8 Mpc), along which five confirmed X-ray groups exist. We show that within the uncertainties, the ionization parameter, equivalent width (EW), EW versus specific star-formation rate (sSFR) relation, EW versus stellar mass relation, line-of-sight velocity dispersion, dynamical mass, and stellar-to-dynamical mass ratio are similar for filament and field star-forming galaxies. However, we show that on average, filament star-forming galaxies are more metal-enriched (∼\sim 0.1−-0.15 dex), possibly due to the inflow of the already enriched intrafilamentary gas into filament galaxies. Moreover, we show that electron densities are significantly lower (a factor of ∼\sim17) in filament star-forming systems compared to those in the field, possibly because of a longer star-formation timescale for filament star-forming galaxies. Our results highlight the potential pre-processing role of galaxy filaments and intermediate-density environments on the evolution of galaxies, which has been highly underestimated

    The MOSDEF Survey: Electron Density and Ionization Parameter at z∼2.3z\sim2.3

    Full text link
    Using observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey, we investigate the physical conditions of star-forming regions in z∼2.3z\sim2.3 galaxies, specifically the electron density and ionization state. From measurements of the [O II]λλ\lambda\lambda3726,3729 and [S II]λλ\lambda\lambda6716,6731 doublets, we find a median electron density of ∼250\sim250 cm−3^{-3} at z∼2.3z\sim2.3, an increase of an order of magnitude compared to measurements of galaxies at z∼0z\sim0. While z∼2.3z\sim2.3 galaxies are offset towards significantly higher O32_{32} values relative to local galaxies at fixed stellar mass, we find that the high-redshift sample follows a similar distribution to the low-metallicity tail of the local distribution in the O32_{32} vs. R23_{23} and O3N2 diagrams. Based on these results, we propose that z∼2.3z\sim2.3 star-forming galaxies have the same ionization parameter as local galaxies at fixed metallicity. In combination with simple photoionization models, the position of local and z∼2.3z\sim2.3 galaxies in excitation diagrams suggests that there is no significant change in the hardness of the ionizing spectrum at fixed metallicity from z∼0z\sim0 to z∼2.3z\sim2.3. We find that z∼2.3z\sim2.3 galaxies show no offset compared to low-metallicity local galaxies in emission line ratio diagrams involving only lines of hydrogen, oxygen, and sulfur, but show a systematic offset in diagrams involving [N II]λ\lambda6584. We conclude that the offset of z∼2.3z\sim2.3 galaxies from the local star-forming sequence in the [N II] BPT diagram is primarily driven by elevated N/O at fixed O/H compared to local galaxies. These results suggest that the local gas-phase and stellar metallicity sets the ionization state of star-forming regions at z∼0z\sim0 and z∼2z\sim2.Comment: 26 pages, 14 figures, accepted to Ap

    The MOSDEF Survey: Detection of [OIII]λ\lambda4363 and the direct-method oxygen abundance of a star-forming galaxy at z=3.08

    Full text link
    We present measurements of the electron-temperature based oxygen abundance for a highly star-forming galaxy at z=3.08, COSMOS-1908. This is the highest redshift at which [OIII]λ\lambda4363 has been detected, and the first time that this line has been measured at z>2. We estimate an oxygen abundance of 12+log(O/H)=8.00−0.14+0.13=8.00^{+0.13}_{-0.14}. This galaxy is a low-mass (109.310^{9.3} M⊙_{\odot}), highly star-forming (∼50\sim50 M⊙_{\odot} yr−1^{-1}) system that hosts a young stellar population (∼160\sim160 Myr). We investigate the physical conditions of the ionized gas in COSMOS-1908 and find that this galaxy has a high ionization parameter, little nebular reddening (E(B−V)gas<0.14E(B-V)_{\rm gas}<0.14), and a high electron density (ne∼500n_e\sim500 cm−3^{-3}). We compare the ratios of strong oxygen, neon, and hydrogen lines to the direct-method oxygen abundance for COSMOS-1908 and additional star-forming galaxies at z=0-1.8 with [OIII]λ\lambda4363 measurements, and show that galaxies at z∼\sim1-3 follow the same strong-line correlations as galaxies in the local universe. This agreement suggests that the relationship between ionization parameter and O/H is similar for z∼\sim0 and high-redshift galaxies. These results imply that metallicity calibrations based on lines of oxygen, neon, and hydrogen do not strongly evolve with redshift and can reliably estimate abundances out to z∼\sim3, paving the way for robust measurements of the evolution of the mass-metallicity relation to high redshift.Comment: 7 pages, 3 figures, 1 table, accepted to ApJ Letter

    The Far-infrared Emission of the First Massive Galaxies

    Get PDF
    Massive Population II galaxies undergoing the first phase of vigorous star formation after the initial Population III stage should have high energy densities and silicate-rich interstellar dust. We have modeled the resulting far-infrared spectral energy distributions (SEDs), demonstrating that they are shifted substantially to bluer (`warmer´) wavelengths relative to the best fitting ones at z ~ 3, and with strong outputs in the 10 - 40 micron range. When combined with a low level of emission by carbon dust, their SEDs match that of Haro 11, a local moderately-low-metallicity galaxy undergoing a very young and vigorous starburst that is likely to approximate the relevant conditions in young Population II galaxies. We expect to see similar SEDs at high redshifts (z >= 5) given the youth of galaxies at this epoch. In fact, we find a progression with redshift in observed galaxy SEDs, from those resembling local ones at 2 < z < 4 to a closer resemblance with Haro 11 at 5 < z < 7. In addition to the insight on conditions in high redshift galaxies, this result implies that estimates of the total infrared luminosities at z ~ 6 based on measurements near lambda ~ 1 mm can vary by factors of 2 - 4, depending on the SED template used. Currently popular modified blackbodies or local templates can result in significant underestimates compared with the preferred template based on the SED of Haro 11.Fil: de Rossi, Maria Emilia. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Rieke, George H.. University of Arizona; Estados UnidosFil: Shivaei, Irene. University of Arizona; Estados UnidosFil: Bromm, Volker. University of Texas at Austin; Estados UnidosFil: Lyu, Jianwei. University of Arizona; Estados Unido
    • …
    corecore