12 research outputs found

    Genetics of Resistance to Common Root Rot (Spot Blotch), Fusarium Crown Rot, and Sharp Eyespot in Wheat

    Get PDF
    Due to soil changes, high density planting, and the use of straw-returning methods, wheat common root rot (spot blotch), Fusarium crown rot (FCR), and sharp eyespot (sheath blight) have become severe threats to global wheat production. Only a few wheat genotypes show moderate resistance to these root and crown rot fungal diseases, and the genetic determinants of wheat resistance to these devastating diseases are poorly understood. This review summarizes recent results of genetic studies of wheat resistance to common root rot, Fusarium crown rot, and sharp eyespot. Wheat germplasm with relatively higher resistance are highlighted and genetic loci controlling the resistance to each disease are summarized

    Rpb1 Sumoylation in Response to UV Radiation or Transcriptional Impairment in Yeast

    Get PDF
    Covalent modifications of proteins by ubiquitin and the Small Ubiquitin-like MOdifier (SUMO) have been revealed to be involved in a plethora of cellular processes, including transcription, DNA repair and DNA damage responses. It has been well known that in response to DNA damage that blocks transcription elongation, Rpb1, the largest subunit of RNA polymerase II (Pol II), is ubiquitylated and subsequently degraded in mammalian and yeast cells. However, it is still an enigma regarding how Pol II responds to damaged DNA and conveys signal(s) for DNA damage-related cellular processes. We found that Rpb1 is also sumoylated in yeast cells upon UV radiation or impairment of transcription elongation, and this modification is independent of DNA damage checkpoint activation. Ubc9, an E2 SUMO conjugase, and Siz1, an E3 SUMO ligase, play important roles in Rpb1 sumoylation. K1487, which is located in the acidic linker region between the C-terminal domain and the globular domain of Rpb1, is the major sumoylation site. Rpb1 sumoylation is not affected by its ubiquitylation, and vice versa, indicating that the two processes do not crosstalk. Abolishment of Rpb1 sumoylation at K1487 does not affect transcription elongation or transcription coupled repair (TCR) of UV-induced DNA damage. However, deficiency in TCR enhances UV-induced Rpb1 sumoylation, presumably due to the persistence of transcription-blocking DNA lesions in the transcribed strand of a gene. Remarkably, abolishment of Rpb1 sumoylation at K1487 causes enhanced and prolonged UV-induced phosphorylation of Rad53, especially in TCR-deficient cells, suggesting that the sumoylation plays a role in restraining the DNA damage checkpoint response caused by transcription-blocking lesions. Our results demonstrate a novel covalent modification of Rpb1 in response to UV induced DNA damage or transcriptional impairment, and unravel an important link between the modification and the DNA damage checkpoint response

    Realization of deep subwavelength resolution with singular media

    No full text
    The record of imaging resolution has kept being refreshed in the past decades and the best resolution of hyperlenses and superlenses so far is about one out of tens in terms of wavelength. In this paper, by adopting a hybrid concept of transformation optics and singular media, we report a broadband meta-lens design methodology with ultra-high resolution. The meta-lens is made of subwavelength metal/air layers, which exhibit singular medium property over a broad band. As a proof of concept, the subwavelength imaging ability is demonstrated over a broad frequency band from 1.5–10 GHz with the resolution varying from 1/117 to 1/17 wavelength experimentally.Published versio

    Proteomic Landscape of Human Spermatozoa: Optimized Extraction Method and Application

    No full text
    Human spermatozoa proteomics exposed to some physical, biological or chemical stressors is being explored. However, there is a lack of optimized sample preparation methods to achieve in-depth protein coverage for sperm cells. Meanwhile, it is not clear whether antibiotics can regulate proteins to affect sperm quality. Here, we systematically compared a total of six different protein extraction methods based the combination of three commonly used lysis buffers and physical lysis strategies. The urea buffer combined with ultrasonication (UA-ultrasonication) produced the highest protein extraction rate, leading to the deepest coverage of human sperm proteome (5685 protein groups) from healthy human sperm samples. Since the antibiotics, amoxicillin and clarithromycin, have been widely used against H. pylori infection, we conduct a longitudinal study of sperm proteome via data-independent acquisition tandem mass spectrometry (DIA-MS/MS) on an infected patient during on and off therapy with these two drugs. The semen examination and morphological analysis were performed combined with proteomics analysis. Our results indicated that antibiotics may cause an increase in the sperm concentration and the rate of malformed sperm and disrupt proteome expression in sperm. This work provides an optimized extraction method to characterize the in-depth human sperm proteome and to extend its clinical applications

    Boundary-directed epitaxy of block copolymers

    No full text
    Directing the position, orientation, and long-range lateral order of block copolymer domains to produce technologically-useful, sublithographic patterns is a challenge. Here, the authors present a promising approach to overcome the challenge by directing assembly using spatial boundaries between planar, low-resolution regions on a surface with different composition

    Revealing the Interfacial Self-Assembly Pathway of Large-Scale, Highly-Ordered, Nanoparticle/Polymer Monolayer Arrays at an Air/Water Interface

    No full text
    The pathway of interfacial self-assembly of large-scale, highly ordered 2D nanoparticle/polymer monolayer or bilayer arrays from a toluene solution at an air/water interface was investigated using grazing-incidence small-angle scattering at a synchrotron source. Interfacial-assembly of the ordered nanoparticle/polymer array was found to occur through two stages: formation of an incipient randomly close-packed interfacial monolayer followed by compression of the monolayer to form a close-packed lattice driven by solvent evaporation from the polymer. Because the nanoparticles are hydrophobic, they localize exclusively to the polymer–air interface during self-assembly, creating a through thickness asymmetric film as confirmed by X-ray reflectivity. The interfacial self-assembly approach can be extended to form binary NP/polymer arrays. It is anticipated that by understanding the interfacial self-assembly pathway, this simple evaporative procedure could be conducted as a continuous process amenable to large area nanoparticle-based manufacturing needed for emerging energy technologies
    corecore