777 research outputs found

    Quantum Fluctuations of Black Hole Geometry

    Full text link
    By using the minisuperspace model for the interior metric ofstatic black holes, we solve the Wheeler-DeWitt equation to study quantum mechanics of the horizon geometry. Our basic idea is to introduce the gravitational mass and the expansions of null rays as quantum operators. Then, the exact wave function is found as a mass eigenstate, and the radius of the apparent horizon is quantum-mechanically defined. In the evolution of the metric variables, the wave function changes from a WKB solution giving the classical trajectories to a tunneling solution. By virtue of the quantum fluctuations of the metric evolution beyond the WKB approximation, we can observe a static black hole state with the apparent horizon separating from the event horizon.Comment: 18 pages, DPNU-93-3

    Different photochemical behavior of bis(biphenyl)ethylenes and ethenes in solution and in the solid-state: Structurally controlled Z/E-photoisomerization in the solid-state

    Get PDF
    ArticleJOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY. 184(1-2): 44-49 (2006)journal articl

    Reconstruction of the biogeochemistry and ecology of photoautotrophs based on the nitrogen and carbon isotopic compositions of vanadyl porphyrins from Miocene siliceous sediments

    Get PDF
    We determined both the nitrogen and carbon isotopic compositions of various vanadyl alkylporphyrins isolated from siliceous marine sediments of the Onnagawa Formation (middle Miocene, northeastern Japan) to investigate the biogeochemistry and ecology of photoautotrophs living in the paleo-ocean. The distinctive isotopic signals support the interpretations of previous works that the origin of 17-nor-deoxophylloerythroetioporphyrin (DPEP) is chlorophylls-<i>c</i><sub>1-3</sub>, whereas 8-nor-DPEP may have originated from chlorophylls-<i>a</i><sub>2</sub> or <i>b</i><sub>2</sub> or bacteriochlorophyll-<i>a</i>. Although DPEP and cycloheptanoDPEP are presumably derived from common precursory pigments, their isotopic compositions differed in the present study, suggesting that the latter represents a specific population within the photoautotrophic community. The average δ<sup>15</sup>N value for the entire photoautotrophic community is estimated to be –2 to +1‰ from the δ<sup>15</sup>N values of DPEP (–6.9 to –3.6‰; <i>n</i>=7), considering that the empirical isotopic relationships that the tetrapyrrole nuclei of chloropigments are depleted in <sup>15</sup>N by ~4.8‰ and enriched in <sup>13</sup>C by ~1.8‰ relative to the whole cells. This finding suggests that nitrogen utilized in the primary production was supplied mainly through N<sub>2</sub>-fixation by diazotrophic cyanobacteria. Based on the δ<sup>13</sup>C values of DPEP (–17.9 to –15.6‰; <i>n</i>=7), we estimated isotopic fractionation associated with photosynthetic carbon fixation to be 8–14‰. This range suggests the importance of β-carboxylation and/or active transport of the carbon substrate, indicating in turn the substantial contribution of diazotrophic cyanobacteria to primary production. Based on the δ<sup>15</sup>N values of 17-nor-DPEP (–7.4 to –2.4‰ <i>n</i>=7), the δ<sup>15</sup>N range of chlorophylls-<i>c</i>-producing algae was estimated to be –3 to +3‰. This relative depletion in sup>15</sup>N suggests that these algae mainly utilized nitrogen regenerated from diazotrophic cyanobacteria. Given that diatoms are likely to have constituted the chlorophylls-<i>c</i>-producing algae within the biogenic-silica-rich Onnagawa Formation, cyanobacteria-hosting diatoms may have been important contributors to primary production

    Statistical Analysis of Surface Reconstruction Domains on InAs Wetting Layer Preceding Quantum Dot Formation

    Get PDF
    Surface of an InAs wetting layer on GaAs(001) preceding InAs quantum dot (QD) formation was observed at 300°C with in situ scanning tunneling microscopy (STM). Domains of (1 × 3)/(2 × 3) and (2 × 4) surface reconstructions were located in the STM image. The density of each surface reconstruction domain was comparable to that of subsequently nucleated QD precursors. The distribution of the domains was statistically investigated in terms of spatial point patterns. It was found that the domains were distributed in an ordered pattern rather than a random pattern. It implied the possibility that QD nucleation sites are related to the surface reconstruction domains

    Hard X-ray Luminosities of Multinuclei Infrared Luminous Galaxies Showing a Radio/Far-Infrared Excess

    Get PDF
    We report the results of hard X-ray observations of four multinuclei merging infrared luminous galaxies (IRLGs). We selected these four sources for their excess of radio to far-infrared luminosity ratio compared with starburst galaxies. This excess suggests that activity associated with a supermassive black hole (SMBH) contributes strongly to the IRLGs' bolometric luminosities. Although we expect strong hard X-ray emission from the SMBH-driven activity, the radio-excess multinuclei merging IRLGs show considerably smaller hard X-ray luminosities relative to far-infrared (40−-500 μ\mum) and infrared (8−-1000 μ\mum) luminosities than active galactic nuclei (AGNs) showing a similar radio-excess. This result may demonstrate that emission in the hard X-ray region from SMBH-driven activity in the multinuclei merging IRLGs is severely suppressed compared to a typical spectral energy distribution of SMBH-driven activity in AGNs. If this is a common property of merging IRLGs, without its correction, hard X-ray observations underestimate the contribution of SMBH-driven activity to the bolometric luminosities of merging IRLGs.Comment: 25 pages of text, 4 figures, aaspp4.sty, Astrophysical Journal, in press (1999, Volume 527

    Dimeric structures of quinol-dependent nitric oxide reductases (qNORs) revealed by cryo–electron microscopy

    Get PDF
    Quinol-dependent nitric oxide reductases (qNORs) are membrane-integrated, iron-containing enzymes of the denitrification pathway, which catalyze the reduction of nitric oxide (NO) to the major ozone destroying gas nitrous oxide (N2O). Cryo–electron microscopy structures of active qNOR from Alcaligenes xylosoxidans and an activity-enhancing mutant have been determined to be at local resolutions of 3.7 and 3.2 Å, respectively. They unexpectedly reveal a dimeric conformation (also confirmed for qNOR from Neisseria meningitidis) and define the active-site configuration, with a clear water channel from the cytoplasm. Structure-based mutagenesis has identified key residues involved in proton transport and substrate delivery to the active site of qNORs. The proton supply direction differs from cytochrome c–dependent NOR (cNOR), where water molecules from the cytoplasm serve as a proton source similar to those from cytochrome c oxidase

    Hydrostatic Compression Behavior and High-Pressure Stabilized β-Phase in γ-Based Titanium Aluminide Intermetallics

    Get PDF
    Titanium aluminides find application in modern light-weight, high-temperature turbines, such as aircraft engines, but suffer from poor plasticity during manufacturing and processing. Huge forging presses enable materials processing in the 10-GPa range, and hence, it is necessary to investigate the phase diagrams of candidate materials under these extreme conditions. Here, we report on an in situ synchrotron X-ray diffraction study in a large-volume press of a modern (α2 + γ) two-phase material, Ti-45Al-7.5Nb-0.25C, under pressures up to 9.6 GPa and temperatures up to 1686 K. At room temperature, the volume response to pressure is accommodated by the transformation γ → α2, rather than volumetric strain, expressed by the apparently high bulk moduli of both constituent phases. Crystallographic aspects, specifically lattice strain and atomic order, are discussed in detail. It is interesting to note that this transformation takes place despite an increase in atomic volume, which is due to the high ordering energy of γ. Upon heating under high pressure, both the eutectoid and γ-solvus transition temperatures are elevated, and a third, cubic β-phase is stabilized above 1350 K. Earlier research has shown that this β-phase is very ductile during plastic deformation, essential in near-conventional forging processes. Here, we were able to identify an ideal processing window for near-conventional forging, while the presence of the detrimental β-phase is not present under operating conditions. Novel processing routes can be defined from these findings. © 2016, Creative Commons

    The active form of quinol-dependent Nitric Oxide reductase (qNOR) from Neisseria meningitidis is a dimer

    Get PDF
    Neisseria meningitidis is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from N. meningitidis (NmqNOR) reported here at 3.15 Å resolution, show monomeric assemblies, despite the more active dimeric sample being used for crystallization. Cryo-electron microscopic analysis of the same chromatographic fraction of NmqNOR, however, revealed a dimeric assembly at 3.06 Å resolution. It is shown that zinc (which is used in crystallization) binding near the dimer-stabilizing TMII region contributes to the disruption of the dimer. A similar destabilization is observed in the monomeric (∼85 kDa) cryo-EM structure of a mutant (Glu494Ala) qNOR from the opportunistic pathogen Alcaligenes (Achromobacter) xylosoxidans, which primarily migrates as a monomer. The monomer–dimer transition of qNORs seen in the cryo-EM and crystallographic structures has wider implications for structural studies of multimeric membrane proteins. X-ray crystallographic and cryo-EM structural analyses have been performed on the same chromatographic fraction of NmqNOR to high resolution. This represents one of the first examples in which the two approaches have been used to reveal a monomeric assembly in crystallo and a dimeric assembly in vitrified cryo-EM grids. A number of factors have been identified that may trigger the destabilization of helices that are necessary to preserve the integrity of the dimer. These include zinc binding near the entry of the putative proton-transfer channel and the preservation of the conformational integrity of the active site. The mutation near the active site results in disruption of the active site, causing an additional destabilization of helices (TMIX and TMX) that flank the proton-transfer channel helices, creating an inert monomeric enzyme

    Berry phase and persistent current in disordered mesoscopic rings

    Full text link
    A novel quantum interference effect in disordered quasi-one-dimensional rings in the inhomogeneous magnetic field is reported. We calculate the canonical disorder averaged persistent current using the diagrammatic perturbation theory. It is shown that within the adiabatic regime the average current oscillates as a function of the geometric flux which is related to the Berry phase and the period becomes half the value of the case of a single one-dimensional ring. We also discuss the magnetic dephasing effect on the averaged current.Comment: 6 pages, RevTeX, 2 figures. To appear in Phys. Rev. B Rapid Communications Vol.60 No.12 (1999
    • …
    corecore