302 research outputs found

    Avaliação radiográfica da adenoide - sugestão de parâmetros de referência

    Get PDF
    OBJECTIVE:this study aimed to evaluate the usefulness of current radiographic measurements, which were originally conceived to evaluate adenoid hypertrophy, as potential referral parameters.METHODS:children aged from 4 to 14 years, of both genders, who presented nasal obstruction complaints, were subjected to cavum radiography. Radiographic examinations (n = 120) were evaluated according to categorical and quantitative parameters, and data were compared to gold-standard videonasopharyngoscopic examination, regarding accuracy (sensitivity, negative predictive value, specificity, and positive predictive value).RESULTS:radiographic grading systems presented low sensitivity for the identification of patients with two-thirds choanal space obstruction. However, some of these parameters presented relatively high specificity rates when three-quarters adenoid obstruction was the threshold of interest. Amongst the quantitative variables, a mathematical model was found to be more suitable for identifying patients with more than two-thirds obstruction.CONCLUSION:this model was shown to be potentially useful as a screening tool to include patients with, at least, two-thirds adenoid obstruction. Moreover, one of the categorical parameters was demonstrated to be relatively more useful, as well as a potentially safer assessment tool to exclude patients with less than three-quarters obstruction, to be indicated for adenoidectomy.OBJETIVO:o objetivo deste estudo foi de investigar a utilidade de medidas radiográficas destinadas à avaliação da tonsila faríngea a serem utilizadas como potenciais parâmetros de encaminhamento.MÉTODOS:crianças de quatro a 14 anos, de ambos os gêneros, que apresentavam queixas referentes à obstrução nasal foram submetidas à radiografia do cavum. Os registros radiográficos (n = 120) foram avaliados de acordo com parâmetros categóricos e quantitativos, e dados resultantes foram comparados ao exame padrão-ouro de videonasofaringoscopia, em relação às suas taxas de acurácia (sensibilidade, valor preditivo negativo, especificidade e valor preditivo positivo).RESULTADOS:os parâmetros radiográficos categóricos apresentaram baixa sensibilidade para a identificação de pacientes portadores de 2/3 de obstrução do espaço coanal. No entanto, alguns destes parâmetros apresentaram especificidades relativamente altas quando 3/4 de obstrução coanal era o ponto de corte de interesse. Dentre as variáveis quantitativas, um modelo matemático se mostrou mais adequado para identificar pacientes com mais de 2/3 de obstrução coanal.CONCLUSÃO:este modelo demonstrou, assim, ser potencialmente útil como método de rastreamento para identificação de pacientes com pelo menos 2/3 de obstrução adenoidiana. Além disso, um dos parâmetros categóricos analisados demonstrou ser relativamente mais útil e potencialmente seguro para eliminar pacientes queixosos com menos de 3/4 de obstrução a serem indicados à adenoidectomia.Universidade São Francisco Faculdade de OdontologiaUniversidade Federal de São Paulo (UNIFESP) Department of Otorhinolaryngology, Head and Neck SurgeryUNIFESP, Department of Otorhinolaryngology, Head and Neck SurgerySciEL

    Large and stable genome edits at the sorghum alpha kafirin locus result in changes in chromatin accessibility and globally increased expression of genes encoding lysine enrichment

    Get PDF
    Introduction: Sorghum is a resilient and widely cultivated grain crop used for feed and food. However, it’s grain is deficient in lysine, an essential amino acid. This is due to the primary seed storage proteins, the alpha-kafirins, lacking lysine. It has been observed that reductions in alpha-kafirin protein results in rebalancing of the seed proteome and a corresponding increase in non-kafirin proteins which leads to an increased lysine content. However, the mechanisms underlying proteome rebalancing are unclear. This study characterizes a previously developed gene edited sorghum line, with deletions at the alpha kafirin locus. Methods: A single consensus guide RNA leads to tandem deletion of multiple members of the gene family in addition to the small target site mutations in remaining genes. RNA-seq and ATAC-seq were utilized to identify changes in gene expression and chromatin accessibility in developing kernels in the absence of most alpha-kafirin expression. Results: Several differentially accessible chromatin regions and differentially expressed genes were identified. Additionally, several genes upregulated in the edited sorghum line were common with their syntenic orthologues differentially expressed in maize prolamin mutants. ATAC-seq showed enrichment of the binding motif for ZmOPAQUE 11, perhaps indicating the transcription factor’s involvement in the kernel response to reduced prolamins. Discussion: Overall, this study provides a resource of genes and chromosomal regions which may be involved in sorghum’s response to reduced seed storage proteins and the process of proteome rebalancing

    RDR6 Has a Broad-Spectrum but Temperature-Dependent Antiviral Defense Role in \u3ci\u3eNicotiana benthamiana\u3c/i\u3e

    Get PDF
    SDE1/SGS2/RDR6, a putative RNA-dependent RNA polymerase (RdRP) from Arabidopsis thaliana, has previously been found to be indispensable for maintaining the posttranscriptional silencing of transgenes, but it is seemingly redundant for antiviral defense. To elucidate the antiviral role of this RdRP in a different host plant and to evaluate whether plant growth conditions affect its role, we down-regulated expression of the Nicotiana benthamiana homolog, NbRDR6, and examined the plants for altered susceptibility to various viruses at different growth temperatures. The results we describe here clearly show that plants with reduced expression of NbRDR6 were more susceptible to all viruses tested and that this effect was more pronounced at higher growth temperatures. Diminished expression of NbRDR6 also permitted efficient multiplication of tobacco mosaic virus in the shoot apices, leading to serious disruption with microRNA-mediated developmental regulation. Based on these results, we propose that NbRDR6 participates in the antiviral RNA silencing pathway that is stimulated by rising temperatures but suppressed by virus-encoded silencing suppressors. The relative strengths of these two factors, along with other plant defense components, critically influence the outcome of virus infections

    Engineering linear, branched-chain triterpene metabolism in monocots

    Get PDF
    Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large-scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (\u3e1 mg/g FW in T0 mature plants) were obtained using the cytosolic-targeting strategy. Plastid-targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid-targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots

    Engineering linear, branched-chain triterpene metabolism in monocots

    Get PDF
    Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large-scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (\u3e1 mg/g FW in T0 mature plants) were obtained using the cytosolic-targeting strategy. Plastid-targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid-targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots

    Engineering linear, branched-chain triterpene metabolism in monocots

    Get PDF
    Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large-scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (\u3e1 mg/g FW in T0 mature plants) were obtained using the cytosolic-targeting strategy. Plastid-targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid-targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots

    Assessing Anthocyanin Biosynthesis in Solanaceae as a Model Pathway for Secondary Metabolism

    Get PDF
    Solanaceae have played an important role in elucidating how flower color is specified by the flavonoid biosynthesis pathway (FBP), which produces anthocyanins and other secondary metabolites. With well-established reverse genetics tools and rich genomic resources, Solanaceae provide a robust framework to examine the diversification of this well-studied pathway over short evolutionary timescales and to evaluate the predictability of genetic perturbation on pathway flux. Genomes of eight Solanaceae species, nine related asterids, and four rosids were mined to evaluate variation in copy number of the suite of FBP enzymes involved in anthocyanin biosynthesis. Comparison of annotation sources indicated that the NCBI annotation pipeline generated more and longer FBP annotations on average than genome-specific annotation pipelines. The pattern of diversification of each enzyme among asterids was assessed by phylogenetic analysis, showing that the CHS superfamily encompasses a large paralogous family of ancient and recent duplicates, whereas other FBP enzymes have diversified via recent duplications in particular lineages. Heterologous expression of a pansy F3050H gene in tobacco changed flower color from pink to dark purple, demonstrating that anthocyanin production can be predictably modified using reverse genetics. These results suggest that the Solanaceae FBP could be an ideal system to model genotype-to-phenotype interactions for secondary metabolism

    Engineering linear, branched-chain triterpene metabolism in monocots

    Get PDF
    Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large-scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (\u3e1 mg/g FW in T0 mature plants) were obtained using the cytosolic-targeting strategy. Plastid-targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid-targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots

    Engineering linear, branched-chain triterpene metabolism in monocots

    Get PDF
    Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large-scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (\u3e1 mg/g FW in T0 mature plants) were obtained using the cytosolic-targeting strategy. Plastid-targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid-targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots

    Engineering linear, branched-chain triterpene metabolism in monocots

    Get PDF
    Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large-scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (\u3e1 mg/g FW in T0 mature plants) were obtained using the cytosolic-targeting strategy. Plastid-targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid-targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots
    • …
    corecore