12 research outputs found

    Role of the H helix in heparin binding to protein C inhibitor

    Get PDF
    Protein C inhibitor (PCI) is a plasma serine proteinase inhibitor (serpin) that is a major physiological regulator of activated protein C. Inhibition of its target proteinase is accelerated by heparin in a reaction that involves the binding of both inhibitor and proteinase to heparin to form a ternary complex. This study was undertaken to understand the role of the H helix region (residues 264-278) of PCI in heparin binding and used (i) a recombinant truncated PCI fusion protein of the first 294 residues, (ii) H helix synthetic peptides containing single Arg/Lys-->Glu substitutions, and (iii) site-directed Ala mutagenesis of 4 basic residues (Arg-269, Lys-270, Lys-276, and Lys-277) in the H helix region of full-length recombinant PCI (rPCI) expressed in Baculovirus. The PCI fusion protein interfered in heparin-accelerated PCI-proteinase inhibition reactions, and it bound to heparin-Sepharose. Compared to the wild-type PCI fusion protein, deletion of the H helix from the fusion protein resulted in a reduction of both heparin-Sepharose binding and the ability to compete for heparin during PCI-proteinase inhibition reactions. Competition assays with H helix synthetic peptides revealed that the R269E altered peptide was the least effective at blocking heparin-catalyzed PCI-proteinase inhibition reactions. Compared with full-length active wild-type rPCI, R269A: K270A and K276A:K277A rPCI both had reduced heparin-Sepharose binding, but only R269A:K270A rPCI showed a loss of heparin-accelerated proteinase inhibition for both activated protein C and thrombin. We conclude that a major heparin-binding site of PCI is the H helix, unlike its heparin-binding serpin homologues antithrombin and heparin cofactor II, which bind heparin primarily through the D heli

    Altered Dermatan Sulfate Structure and Reduced Heparin Cofactor II-stimulating Activity of Biglycan and Decorin from Human Atherosclerotic Plaque

    Get PDF
    Biglycan and decorin are small dermatan sulfate-containing proteoglycans in the extracellular matrix of the artery wall. The dermatan sulfate chains are known to stimulate thrombin inhibition by heparin cofactor II (HCII), a plasma proteinase inhibitor that has been detected within the artery wall. The purpose of this study was to analyze the HCII-stimulatory activity of biglycan and decorin isolated from normal human aorta and atherosclerotic lesions type II through VI and to correlate activity with dermatan sulfate chain composition and structure. Biglycan and decorin from plaque exhibited a 24-75% and 38-79% loss of activity, respectively, in thrombin-HCII inhibition assays relative to proteoglycan from normal aorta. A significant negative linear relationship was observed between lesion severity and HCII stimulatory activity (r = 0.79, biglycan; r = 0.63, decorin; p < 0.05). Biglycan, but not decorin, from atherosclerotic plaque contained significantly reduced amounts of iduronic acid and disulfated disaccharides DeltaDi-2,4S and DeltaDi-4,6S relative to proteoglycan from normal artery. Affinity coelectrophoresis analysis of a subset of samples demonstrated that increased interaction of proteoglycan with HCII in agarose gels paralleled increased activity in thrombin-HCII inhibition assays. In conclusion, both biglycan and decorin from atherosclerotic plaque possessed reduced activity with HCII, but only biglycan demonstrated a correlation between activity and specific glycosaminoglycan structural features. Loss of the ability of biglycan and decorin in atherosclerotic lesions to regulate thrombin activity through HCII may be critical in the progression of the disease

    Citizen science can improve conservation science, natural resource management, and environmental protection

    Get PDF
    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths bywhich citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that: 1. Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement. 2. Many types of projects can benefit fromcitizen science, but one must be careful tomatch the needs for science and public involvement with the right type of citizen science project and the right method of public participation. 3. Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers.When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems

    Designing authoritarian deliberation: how social media platforms influence political talk in China

    Get PDF
    Discussion is often celebrated as a critical element of public opinion and political participation. Recently, scholars have suggested that the design and features of specific online platforms shape what is politically expressed online and how. Building on these findings and drawing on 112 semi-structured qualitative interviews with information technology experts and internet users, we explain how major Chinese social media platforms differ in structure and motivation. Drawing upon a nationwide representative survey and an online experiment, we find that platforms aiming to make users a source of information through public, information-centred communication, such as the Twitter-like Weibo, are more conducive to political expression; while platforms built to optimize building social connections through private, user-centred communication, such as WhatsApp and Facebook-like WeChat, tend to inhibit political expression. These technological design effects are stronger when users believe the authoritarian state tolerates discussion, but less important when political talk is sensitive. The findings contribute to the debate on the political consequences of the internet by specifying technological and political conditions

    Myeloid and CD4 T Cells Comprise the Latent Reservoir in Antiretroviral Therapy-Suppressed SIVmac251-Infected Macaques

    No full text
    This study provides further evidence that the latent reservoir is comprised of both CD4+ T cells and myeloid cells. The data presented here suggest that CD4+ T cells and macrophages found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. Additionally, we have shown that monocytes in blood contain latent virus and, though not considered a reservoir themselves due to their short life span, could contribute to the size of the latent reservoir upon entering the tissue and differentiating into long-lived macrophages. These new insights into the size and location of the SIV reservoir using a model that is heavily studied in the HIV field could have great implications for HIV-infected individuals and should be taken into consideration with the development of future HIV cure strategies.Human immunodeficiency virus (HIV) eradication or long-term suppression in the absence of antiretroviral therapy (ART) requires an understanding of all viral reservoirs that could contribute to viral rebound after ART interruption. CD4 T cells (CD4s) are recognized as the predominant reservoir in HIV type 1 (HIV-1)-infected individuals. However, macrophages are also infected by HIV-1 and simian immunodeficiency virus (SIV) during acute infection and may persist throughout ART, contributing to the size of the latent reservoir. We sought to determine whether tissue macrophages contribute to the SIVmac251 reservoir in suppressed macaques. Using cell-specific quantitative viral outgrowth assays (CD4-QVOA and MΦ-QVOA), we measured functional latent reservoirs in CD4s and macrophages in ART-suppressed SIVmac251-infected macaques. Spleen, lung, and brain in all suppressed animals contained latently infected macrophages, undetectable or low-level SIV RNA, and detectable SIV DNA. Silent viral genomes with potential for reactivation and viral spread were also identified in blood monocytes, although these cells might not be considered reservoirs due to their short life span. Additionally, virus produced in the MΦ-QVOA was capable of infecting healthy activated CD4s. Our results strongly suggest that functional latent reservoirs in CD4s and macrophages can contribute to viral rebound and reestablishment of productive infection after ART interruption. These findings should be considered in the design and implementation of future HIV cure strategies
    corecore