3,464 research outputs found
Surface Shubnikov-de Hass oscillations and non-zero Berry phases of the topological hole conduction in TlBiSe
We report the observation of two-dimensional Shubnikov-de Hass (SdH)
oscillations in the topological insulator TlBiSe. Hall
effect measurements exhibited electron-hole inversion in samples with bulk
insulating properties. The SdH oscillations accompanying the hole conduction
yielded a large surface carrier density of /cm, with the Landau-level fan diagram exhibiting the
Berry phase. These results showed the electron-hole reversibility around the
in-gap Dirac point and the hole conduction on the surface Dirac cone without
involving the bulk metallic conduction.Comment: 5 pages, 4 figure
Precise determination of two-carrier transport properties in the topological insulator TlBiSe
We report the electric transport study of the three-dimensional topological
insulator TlBiSe. We applied a newly developed analysis procedure and
precisely determined two-carrier transport properties. Magnetotransport
properties revealed a multicarrier conduction of high- and low-mobility
electrons in the bulk, which was in qualitative agreement with angle-resolved
photoemission results~[K. Kuroda , Phys. Rev. Lett. , 146801
(2010)]. The temperature dependence of the Hall mobility was explained well
with the conventional Bloch-Gr{\"u}neisen formula and yielded the Debye
temperature ~K. The results indicate that the
scattering of bulk electrons is dominated by acoustic phonons.Comment: 6 pages, 5 figures, to be published in Physical Review
Flocculation phenomenon of a mutant flocculent Saccharomyces cerevisiae strain: Effects of metal ions, sugars, temperature, pH, protein-denaturants and enzyme treatments
The flocculation mechanism of a stable mutant flocculent yeast strain Saccharomyces cerevisiae KRM-1 was quantitatively investigated for potential industrial interest. It was found that the mutant flocculent strain was NewFlo phenotype by means of sugar inhibition test. The flocculation was completely inhibited by treatment with proteinase K, protein-denaturants and carbohydrate modifier. The absence of calcium ions significantly inhibited the flocculation, indicating that Ca2+ was specifically required for flocculation. The flocculation was stable when temperature below 70°C and pH was in the range of 3.0 - 6.0. The flocculation onset of the mutant flocculent strain was in the early stationary growth phase, which coincided with glucose depletion in the batch fermentation for the production of ethanol from kitchen refuse medium. The results are expected to help develop better strategies for the control of mutant flocculent yeast for future large-scale industrial ethanol fermentation
Seasonal variations of atmospheric C2-C7 nonmethane hydrocarbons in Tokyo
Eighteen C2-C7 NMHCs (nonmethane hydrocarbons) were measured hourly during the Integrated Measurement Program for Aerosol and Oxidant Chemistry in Tokyo (IMPACT) measurement campaigns conducted in central Tokyo during four different periods (summer/autumn of 2003 and winter/summer of 2004). The ambient atmospheric concentrations of NMHCs showed an inverse correlation with wind speed and mixing height and were significantly affected by mesoscale weather conditions. The mixing ratio of isoprene tightly correlated with solar flux and temperature in summer, as it was dominantly emitted by the local vegetation. All the observed NMHCs except isoprene showed high correlation with each other in winter (r2 > 0.5), suggesting concurrent accumulation under stagnant condition and common sources. Emission ratios were calculated on the basis of the correlation with carbon monoxide and ethyne. Compared to the typical winter NMEC composition, during summer there was a significant increase (up to 7 times higher than wintertime) of C4-C5 alkanes from ftiel evaporation; of C2-C3 alkenes, n-hexane and benzene from chemical industry; and of toluene from local manufacturers, reflecting the temperature dependence of these evaporative emissions. In addition to the online measurements in Tokyo, canister sampling at a suburban site (Kisai) followed by multidimensional GC analyses was conducted during the summer campaign in 2004. The atmospheric concentrations of longer-lived compounds (≥ several days) at Kisai showed the buildup under sea breeze circulation. The average ambient, concentration of toluene was 2 times higher than that in central Tokyo, likely because of substantial emissions from local industries as reported in the prefectural statistics. Copyright 2007 by the American Geophysical Union
Analysis of Moderately Siderophile Elements in Angrites: Implications for Core Formation of the Angrite Parent Body
Angrites are an enigmatic group of achondrites, that constitute the largest group of basalts not affiliated with the Moon, Mars or Vesta (HEDs). Chemically, angrites are exceptionally refractory element- enriched (e.g., Al, Ca) and volatile element-depleted (e.g., Na and K) achondrites. Highly volatile siderophile and chalcophile elements (Zn, Ge and Se) may be less depleted than alkalis and Ga taken to imply a fractionation of plagiophile elements. Core formation on the angrite parent body (APB) is not well understood due to the dearth of moderately siderophile element (Ga, Ge, Mo, Sb, W) data for angrites, with the exception of Ni and Co [2]. In particular, there are no data for Mo abundances of angrites, while Sb and W abundances are reported for only 3 angrites, and have not always been determined on the same sample. The recent increase in angrite numbers (13) has greatly increased our knowledge of the compositional diversity of the angrite parent body (APB). In this study, we report new Co, Ni, Ga, Mo, Sb and W abundances for angrites by laser ablation inductively coupled plasma mass spectrometry (ICP-MS) in order to place constraints on core formation of the APB
- …