9 research outputs found
Antimicrobial action of phenolic acids combined with violet 405-nm light for disinfecting pathogenic and spoilage fungi
The aim of this study is to investigate the fungicidal spectrum of six phenolic-cinnamic and -benzoic acid derivatives using four fungi, Aspergillus niger, Cladosporium cladosporioides, Trichophyton mentagrophytes and Candida albicans, in a photocombination system with violet 405-nm light. This is the first study to examine the fungicidal mechanism involving oxidative damage using the conidium of A. niger, as well as an assessment of cellular function and chemical characteristics. The results of the screening assay indicated that ferulic acid (FA) and vanillic acid (VA), which possess 4-hydroxyl and 3-methoxy groups in their phenolic acid structures, produced synergistic activity with 405-nm light irradiation. FA and VA (5.0 mM) significantly decreased the viability of A. niger by 2.4 to 2.6-logs under 90-min irradiation. The synergistic effects were attenuated by the addition of the radical scavenger dimethyl sulfoxide. Generation of reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals, were confirmed in the phenolic acid solutions tested after irradiation with colorimetric and electron spin resonance analyses. Adsorption of FA and VA to conidia was greater than other tested phenolic acids, and produced 1.55- and 1.85-fold elevation of intracellular ROS levels, as determined using an oxidant-sensitive probe with flow cytometry analysis. However, cell wall or membrane damage was not the main mechanism by which the combination-induced fungal death was mediated. Intracellular ATP was drastically diminished (5% of control levels) following combined treatment with FA and light exposure, even under a condition that produced negligible decreases in viability, thereby resulting in pronounced growth delay. These results suggest that the first stage in the photofungicidal mechanism is oxidative damage to mitochondria or the cellular catabolism system associated with ATP synthesis, which is a result of the photoreaction of phenolic acids adsorbed and internalized by conidia. This photo-technology in combination with food-grade phenolic acids can aid in developing alternative approaches for disinfection of pathogenic and spoilage fungi in the fields of agriculture, food processing and medical care
Development of Coupled Numerical Model between Floating Caisson and Anti-Oscillation Tanks
Floating caissons can oscillate owing to ocean waves when towed to an installation site. To reduce these oscillations, free-surface anti-oscillation tanks mounted on floating caissons have been proposed. However, no coupled numerical model exists between the motion of the floating caisson and fluid flow in the tanks based on computational fluid dynamics (CFD). In this study, a coupled model is developed and compared to existing physical experiments for validation. In the coupled model, the vertical and rotational motion of the floating caisson are computed as a rigid body, and the motion of the free water in the tank is computed using a CFD model. Numerical results show the predictive capability of the coupled model in terms of the rotational motion (pitch) of the floating caisson within Β±20% of experimental data, regardless of the absence or presence of water in the tank. The numerical results also show that the fluid flow with complex airβwater interface motion in the tank can be analyzed in detail using the coupled model. This suggests that the coupled model developed in this study is a useful tool for quantitatively assessing the effectiveness of an anti-oscillation tank for reducing the pitch of a floating caisson
Vascular tissue reconstruction by monocyte subpopulations on small-diameter acellular grafts via integrin activation
Although the clinical application of cell-free tissue-engineered vascular grafts (TEVGs) has been proposed, vascular tissue regeneration mechanisms have not been fully clarified. Here, we report that monocyte subpopulations reconstruct vascular-like tissues through integrin signaling. An Arg-Glu-Asp-Val peptide-modified acellular long-bypass graft was used as the TEVG, and tissue regeneration in the graft was evaluated using a cardiopulmonary pump system and porcine transplantation model. In 1 day, the luminal surface of the graft was covered with cells that expressed CD163, CD14, and CD16, which represented the monocyte subpopulation, and they exhibited proliferative and migratory abilities. RNA sequencing showed that captured cells had an immune-related phenotype similar to that of monocytes and strongly expressed cell adhesion-related genes. In vitro angiogenesis assay showed that tube formation of the captured cells occurred via integrin signal activation. After medium- and long-term graft transplantation, the captured cells infiltrated the tunica media layer and constructed vascular with a CD31/CD105-positive layer and an Ξ±SMA-positive structure after 3 months. This finding, including multiple early-time observations provides clear evidence that blood-circulating monocytes are directly involved in vascular remodeling