327 research outputs found
A bulk manifestation of Krylov complexity
There are various definitions of the concept of complexity in Quantum Field
Theory as well as for finite quantum systems. For several of them there are
conjectured holographic bulk duals. In this work we establish an entry in the
AdS/CFT dictionary for one such class of complexity, namely Krylov or
K-complexity. For this purpose we work in the double-scaled SYK model which is
dual in a certain limit to JT gravity, a theory of gravity in AdS. In
particular, states on the boundary have a clear geometrical definition in the
bulk. We use this result to show that Krylov complexity of the
infinite-temperature thermofield double state on the boundary of AdS has a
precise bulk description in JT gravity, namely the length of the two-sided
wormhole. We do this by showing that the Krylov basis elements, which are
eigenstates of the Krylov complexity operator, are mapped to length eigenstates
in the bulk theory by subjecting K-complexity to the bulk-boundary map
identifying the bulk/boundary Hilbert spaces. Our result makes extensive use of
chord diagram techniques and identifies the Krylov basis of the boundary
quantum system with fixed chord number states building the bulk gravitational
Hilbert space.Comment: v1: 37 pages + appendices, 12 figures. v2: published versio
Telomeres in ICF syndrome cells are vulnerable to DNA damage due to elevated DNA:RNA hybrids.
DNA:RNA hybrids, nucleic acid structures with diverse physiological functions, can disrupt genome integrity when dysregulated. Human telomeres were shown to form hybrids with the lncRNA TERRA, yet the formation and distribution of these hybrids among telomeres, their regulation and their cellular effects remain elusive. Here we predict and confirm in several human cell types that DNA:RNA hybrids form at many subtelomeric and telomeric regions. We demonstrate that ICF syndrome cells, which exhibit short telomeres and elevated TERRA levels, are enriched for hybrids at telomeric regions throughout the cell cycle. Telomeric hybrids are associated with high levels of DNA damage at chromosome ends in ICF cells, which are significantly reduced with overexpression of RNase H1. Our findings suggest that abnormally high TERRA levels in ICF syndrome lead to accumulation of telomeric hybrids that, in turn, can result in telomeric dysfunction
Bayesian log-Gaussian Cox process regression: applications to meta-analysis of neuroimaging working memory studies
Working memory (WM) was one of the first cognitive processes studied with
functional magnetic resonance imaging. With now over 20 years of studies on WM,
each study with tiny sample sizes, there is a need for meta-analysis to
identify the brain regions that are consistently activated by WM tasks, and to
understand the interstudy variation in those activations. However, current
methods in the field cannot fully account for the spatial nature of
neuroimaging meta-analysis data or the heterogeneity observed among WM studies.
In this work, we propose a fully Bayesian random-effects metaregression model
based on log-Gaussian Cox processes, which can be used for meta-analysis of
neuroimaging studies. An efficient Markov chain Monte Carlo scheme for
posterior simulations is presented which makes use of some recent advances in
parallel computing using graphics processing units. Application of the proposed
model to a real data set provides valuable insights regarding the function of
the WM
Dynamics of Anti-influenza Mucosal IgA Over a Season in a Cohort of Individuals Living or Working in a Long-term Care Facility
BACKGROUND: Serological surveys are used to ascertain influenza infection and immunity, but evidence for the utility of mucosal immunoglobulin A (IgA) as a correlate of infection or protection is limited.
METHODS: We performed influenza-like illness (ILI) surveillance on 220 individuals living or working in a retirement community in Gainesville, Florida from January to May 2018, and took pre- and postseason nasal samples of 11 individuals with polymerase chain reaction (PCR)-confirmed influenza infection and 60 randomly selected controls. Mucosal IgA against 10 strains of influenza was measured from nasal samples.
RESULTS: Overall, 28.2% and 11.3% of individuals experienced a 2-fold and 4-fold rise, respectively, in mucosal IgA to at least 1 influenza strain. Individuals with PCR-confirmed influenza A had significantly lower levels of preseason IgA to influenza A. Influenza-associated respiratory illness was associated with a higher rise in mucosal IgA to influenza strains of the same subtype, and H3N2-associated respiratory illness was associated with a higher rise in mucosal IgA to other influenza A strains.
CONCLUSIONS: By comparing individuals with and without influenza illness, we demonstrated that mucosal IgA is a correlate of influenza infection. There was evidence for cross-reactivity in mucosal IgA across influenza A subtypes
Epidermal Growth Factor–PEG Functionalized PAMAM-Pentaethylenehexamine Dendron for Targeted Gene Delivery Produced by Click Chemistry
Aim of this study was the site-specific conjugation of an epidermal growth factor (EGF)-polyethylene glycol (PEG) chain by click chemistry onto a poly(amido amine) (PAMAM) dendron, as a key step toward defined multifunctional carriers for targeted gene delivery. For this purpose, at first propargyl amine cored PAMAM dendrons with ester ends were synthesized. The chain terminal ester groups were then modified by oligoamines with different secondary amino densities. The oligoamine-modified PAMAM dendrons were well biocompatible, as demonstrated in cytotoxicity assays. Among the different oligoamine-modified dendrons, PAMAM-pentaethylenehexamine (PEHA) dendron polyplexes displayed the best gene transfer ability. Conjugation of PAMAM-PEHA dendron with PEG spacer was conducted via click reaction, which was performed before amidation with PEHA. The resultant PEG-PAMAM-PEHA copolymer was then coupled with EGF ligand. pDNA transfections in HuH-7 hepatocellular carcinoma cells showed a 10-fold higher efficiency with the polyplexes containing conjugated EGF as compared to the ligand-free ones, demonstrating the concept of ligand targeting. Overall gene transfer efficiencies, however, were moderate, suggesting that additional measures for overcoming subsequent intracellular bottlenecks in delivery have to be taken
- …