169 research outputs found

    Broadband and large-area optical chirality generated by an achiral metasurface under achiral excitation

    Full text link
    Optical chirality plays an essential role in chiral light-matter interactions with broad applications in sensing and spectroscopy. Conventional methods of generating optical chirality usually employ chiral structures or chiral excitations. Here, we propose to use an achiral metasurface consisting of gold disk array excited by a linearly polarized light to generate optical chirality. Using full-wave numerical simulations, we show that the metasurface can give rise to large-area optical chirality of the same sign for the wavelength ranging from 1.2 um to 1.5 um. The magnitude of the chirality is comparable to that of circularly polarized plane waves. The emergence of the optical chirality can be attributed to the asymmetric polarization singularity lines (C lines) in the near fields of the metasurface. We further explore the application of the proposed metasurface in chiral discriminations by simulating the absorption of chiral helix particles immersed in the near fields, and demonstrate that the left-handed and right-handed helix particles give rise to different absorptions. The phenomenon can be understood using an analytical theory based on the dipole approximation, which predicts differential absorption quantitatively agrees with the numerical simulation results. Our study uncovers the subtle relationship between near-field optical chirality, polarization singularities, and symmetry. The results can find applications in optical sensing, chiral quantum optics, and optical manipulations of small particles.Comment: 6 pages, 5 figure

    NeuroCARE: A generic neuromorphic edge computing framework for healthcare applications

    Get PDF
    Highly accurate classification methods for multi-task biomedical signal processing are reported, including neural networks. However, reported works are computationally expensive and power-hungry. Such bottlenecks make it hard to deploy existing approaches on edge platforms such as mobile and wearable devices. Gaining motivation from the good performance and high energy-efficiency of spiking neural networks (SNNs), a generic neuromorphic framework for edge healthcare and biomedical applications are proposed and evaluated on various tasks, including electroencephalography (EEG) based epileptic seizure prediction, electrocardiography (ECG) based arrhythmia detection, and electromyography (EMG) based hand gesture recognition. This approach, NeuroCARE, uses a unique sparse spike encoder to generate spike sequences from raw biomedical signals and makes classifications using the spike-based computing engine that combines the advantages of both CNN and SNN. An adaptive weight mapping method specifically co-designed with the spike encoder can efficiently convert CNN to SNN without performance deterioration. The evaluation results show that the overall performance, including the classification accuracy, sensitivity and F1 score, achieve 92.7, 96.7, and 85.7% for seizure prediction, arrhythmia detection and hand gesture recognition, respectively. In comparison with CNN topologies, the computation complexity is reduced by over 80.7% while the energy consumption and area occupation are reduced by over 80% and over 64.8%, respectively, indicating that the proposed neuromorphic computing approach is energy and area efficient and of high precision, which paves the way for deployment at edge platforms

    Prevalence and Clinical Features of Inflammatory Bowel Diseases Associated With Monogenic Variants, Identified by Whole-Exome Sequencing in 1000 Children at a Single Center

    Get PDF
    BACKGROUND & AIMS: A proportion of infants and young children with inflammatory bowel diseases (IBDs) have subtypes associated with a single gene variant (monogenic IBD). We aimed to determine the prevalence of monogenic disease in a cohort of pediatric patients with IBD. METHODS: We performed whole-exome sequencing analyses of blood samples from an unselected cohort of 1005 children with IBD, aged 0-18 years (median age at diagnosis, 11.96 years) at a single center in Canada and their family members (2305 samples total). Variants believed to cause IBD were validated using Sanger sequencing. Biopsies from patients were analyzed by immunofluorescence and histochemical analyses. RESULTS: We identified 40 rare variants associated with 21 monogenic genes among 31 of the 1005 children with IBD (including 5 variants in XIAP, 3 in DOCK8, and 2 each in FOXP3, GUCY2C, and LRBA). These variants occurred in 7.8% of children younger than 6 years and 2.3% of children aged 6-18 years. Of the 17 patients with monogenic Crohn\u27s disease, 35% had abdominal pain, 24% had nonbloody loose stool, 18% had vomiting, 18% had weight loss, and 5% had intermittent bloody loose stool. The 14 patients with monogenic ulcerative colitis or IBD-unclassified received their diagnosis at a younger age, and their most predominant feature was bloody loose stool (78%). Features associated with monogenic IBD, compared to cases of IBD not associated with a single variant, were age of onset younger than 2 years (odds ratio [OR], 6.30; P = .020), family history of autoimmune disease (OR, 5.12; P = .002), extra-intestinal manifestations (OR, 15.36; P \u3c .0001), and surgery (OR, 3.42; P = .042). Seventeen patients had variants in genes that could be corrected with allogeneic hematopoietic stem cell transplantation. CONCLUSIONS: In whole-exome sequencing analyses of more than 1000 children with IBD at a single center, we found that 3% had rare variants in genes previously associated with pediatric IBD. These were associated with different IBD phenotypes, and 1% of the patients had variants that could be potentially corrected with allogeneic hematopoietic stem cell transplantation. Monogenic IBD is rare, but should be considered in analysis of all patients with pediatric onset of IBD

    Enhancing Apoptosome Assembly via Mito-Biomimetic Lipid Nanocarrier for Cancer Therapy

    Get PDF
    Apoptosis is the natural programmed cell death process, which is responsible for abnormal cell clearance. However, many cancer cells develop various mechanisms to escape apoptosis through interrupting apoptosome assembly, which is a key step to initiate apoptosis. This promotes tumorigenesis and drug resistance, and thus, poses a great challenge in cancer treatment. Herein, a biomimetic lipid nanocarrier mimicking mitochondrial Cytochrome C (Cyt C) binding is developed. Cardiolipin, the major phospholipid of mitochondrial inner membrane, is introduced as the main component in biomimetic liposomal formulation. With the help of cardiolipin, Cyt C is sufficiently loaded in liposome based on electrostatic and hydrophobic interaction with cardiolipin. Lonidamine (LND) is added in hydrophobic phase of liposome to modulate the metabolic activity within cancer cells and sensitize the cells to Cyt C-induced apoptosis. The results suggest that LND reduces ATP level and creates favorable environment for Cyt C induced apoptosome assembly, exhibiting higher apoptosis level and anti-tumor efficacy in vitro and in vivo. The conjugation of a tumor-homing peptide, LinTT1, on the nanovesicle, increases the efficacy due to enhanced tumor accumulation. Overall, this biomimetic lipid nanocarrier proves to be an efficient delivery system with great potential of pro-apoptosis cancer therapy

    Achieving High-Energy-Density Graphene/Single-Walled Carbon Nanotube Lithium-Ion Capacitors from Organic-Based Electrolytes

    Get PDF
    Developing electrode materials with high voltage and high specific capacity has always been an important strategy for increasing the energy density of lithium-ion capacitors (LICs). However, organic-based electrolytes with lithium salts limit their potential for application in LICs to voltages below 3.8 V in terms of polarization reactions. In this work, we introduce Li[N(C2F5SO2)2] (lithium Bis (pentafluoroethanesulfonyl)imide or LiBETI), an electrolyte with high conductivity and superior electrochemical and mechanical stability, to construct a three-electrode LIC system. After graphite anode pre-lithiation, the anode potential was stabilized in the three-electrode LIC system, and a stable solid electrolyte interface (SEI) film formed on the anode surface as expected. Meanwhile, the LIC device using LiBETI as the electrolyte, and a self-synthesized graphene/single-walled carbon nanotube (SWCNT) composite as the cathode, showed a high voltage window, allowing the LIC to achieve an operating voltage of 4.5 V. As a result, the LIC device has a high energy density of up to 182 Wh kg−1 and a 2678 W kg−1 power density at 4.5 V. At a current density of 2 A g−1, the capacity retention rate is 72.7% after 10,000 cycles

    Phosphorylation of eIF2α signaling pathway attenuates obesity-induced non-alcoholic fatty liver disease in an ER stress and autophagy-dependent manner

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder and frequently exacerbates in postmenopausal women. In NAFLD, the endoplasmic reticulum (ER) plays an important role in lipid metabolism, in which salubrinal is a selective inhibitor of eIF2α de-phosphorylation in response to ER stress. To determine the potential mechanism of obesity-induced NAFLD, we employed salubrinal and evaluated the effect of ER stress and autophagy on lipid metabolism. Ninety-five female C57BL/6 mice were randomly divided into five groups: standard chow diet, high-fat (HF) diet, HF with salubrinal, HF with ovariectomy, and HF with ovariectomy and salubrinal. All mice except for SC were given HF diet. After the 8-week obesity induction, salubrinal was subcutaneously injected for the next 8 weeks. The expression of ER stress and autophagy markers was evaluated in vivo and in vitro. Compared to the normal mice, the serum lipid level and adipose tissue were increased in obese mice, while salubrinal attenuated obesity by blocking lipid disorder. Also, the histological severity of hepatic steatosis and fibrosis in the liver and lipidosis was suppressed in response to salubrinal. Furthermore, salubrinal inhibited ER stress by increasing the expression of p-eIF2α and ATF4 with a decrease in the level of CHOP. It promoted autophagy by increasing LC3II/I and inhibiting p62. Correlation analysis indicated that lipogenesis in the development of NAFLD was associated with ER stress. Collectively, we demonstrated that eIF2α played a key role in obesity-induced NAFLD, and salubrinal alleviated hepatic steatosis and lipid metabolism by altering ER stress and autophagy through eIF2α signaling

    Preoperative inflammatory markers predict postoperative clinical outcomes in patients undergoing heart valve surgery: A large-sample retrospective study

    Get PDF
    IntroductionPreoperative inflammation affects the postoperative outcomes of patients undergoing heart valve surgery. This study aimed to explore the role and predictive effects of preoperative inflammation on the primary outcomes after valvular cardiac surgery.MethodsThis retrospective study utilized a medical recording system to screen 5075 patients who underwent heart valve surgery. Data on the C-reactive protein (CRP) levels, erythrocyte sedimentation rate (ESR), and neutrophil-to-lymphocyte ratio (NLR) before heart valve surgery were collected from the hospital’s medical system. Postoperative hepatic insufficiency, acute kidney injury, heart failure, and myocardial damage were assessed using blood indicators. Patients with and without prolonged mechanical ventilation, extended intensive care unit stays, prolonged hospital stays, and death within 30 days after surgery (considered the primary outcome in this study) were compared. Group comparisons, receiver operating characteristic (ROC) curve analyses, and logistic analyses were performed to determine the associations between preoperative inflammation and outcomes after heart valve surgery.ResultsA total of 3249 patients were included in the analysis. Significant differences in CRP level, ESR, and NLR were found between patients with and without postoperative adverse outcomes. ROC analysis showed that CRP levels >5 mg/L effectively predicted postoperative heart failure, and NLR >3.5 had a good predictive effect on all-cause mortality within 30 days after surgery. Patients with CRP levels >5 mg/L had a higher incidence of postoperative heart failure than other patients (20.7% vs. 12.6%, P<0.001), with a relative risk of 1.447 (95% confidence interval: 1.155–1.814). Patients with NLR >3.5 had a higher incidence of death within 30 days after surgery (5.3% vs. 1.2%, P<0.001), with a relative risk of 3.236 (95% confidence interval: 1.773–5.906).ConclusionPreoperative inflammation can affect postoperative outcomes in patients undergoing heart valve surgery. CRP level >5 mg/L and NLR >3.5 can effectively predict postoperative heart failure and death within 30 days after surgery, respectively

    Change in perioperative neutrophil-lymphocyte ratio as a potential predictive biomarker for chronic postsurgical pain and quality of life: an ambispective observational cohort study

    Get PDF
    IntroductionAccurate and accessible predictors of chronic postsurgical pain (CPSP) to identify high-risk postsurgical patients are prerequisite for preventive and interventional strategies. We investigated the incidence and risk factors of CPSP after abdominal surgery, with a focus on plasma immunological markers.Materials and methodsThis was a retrospective analysis of patients who underwent abdominal surgery under general anesthesia at a tertiary center between January 2021 and January 2022. The preoperative demographics, laboratory test data, and surgical factors of the participants were collected from the electronic medical record system. Postoperative pain intensity and living conditions at 1 year after discharge from the hospital were assessed via a phone survey. Univariate and multivariate analyses were used to explore independent risk factors associated with CPSP.ResultsA total of 968 patients were included, and 13.53% (n = 131 of 968) of patients reported CPSP 1 year after surgery. Patients with older age, open surgery, higher American Association of Anesthesiologists classification, patient-controlled intravenous analgesia application, longer surgery duration, higher postoperative absolute neutrophil count, and neutrophil-lymphocyte ratio (NLR), lower postoperative absolute lymphocyte count, and higher white blood cell count, were more likely to suffer from CPSP. A changed ratio of NLR (postoperative to preoperative) ≥ 5 significantly correlated with CPSP, moderate to severe pain, maximum numeric rating score since discharge from the hospital, and affected quality of life.DiscussionThe changed ratio of NLR could be used for the early identification of patients at risk for CPSP and affect the quality of life to alert the clinician to undertake further assessment
    • …
    corecore