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BACKGROUND & AIMS: A proportion of infants and young
children with inflammatory bowel diseases (IBDs) have sub-
types associated with a single gene variant (monogenic IBD).
We aimed to determine the prevalence of monogenic disease in

a cohort of pediatric patients with IBD. METHODS: We per-
formed whole-exome sequencing analyses of blood samples
from an unselected cohort of 1005 children with IBD, aged
0–18 years (median age at diagnosis, 11.96 years) at a single
center in Canada and their family members (2305 samples
total). Variants believed to cause IBD were validated using
Sanger sequencing. Biopsies from patients were analyzed
by immunofluorescence and histochemical analyses.
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RESULTS: We identified 40 rare variants associated with 21
monogenic genes among 31 of the 1005 children with IBD
(including 5 variants in XIAP, 3 in DOCK8, and 2 each in FOXP3,
GUCY2C, and LRBA). These variants occurred in 7.8% of children
younger than 6 years and 2.3% of children aged 6–18 years. Of the
17 patients with monogenic Crohn’s disease, 35% had abdominal
pain, 24% had nonbloody loose stool, 18% had vomiting, 18% had
weight loss, and 5% had intermittent bloody loose stool. The 14
patients with monogenic ulcerative colitis or IBD-unclassified
received their diagnosis at a younger age, and their most pre-
dominant feature was bloody loose stool (78%). Features associ-
ated with monogenic IBD, compared to cases of IBD not associated
with a single variant, were age of onset younger than 2 years
(odds ratio [OR], 6.30; P ¼ .020), family history of autoimmune
disease (OR, 5.12; P ¼ .002), extra-intestinal manifestations (OR,
15.36; P < .0001), and surgery (OR, 3.42; P ¼ .042). Seventeen
patients had variants in genes that could be corrected with allo-
geneic hematopoietic stem cell transplantation. CONCLUSIONS: In
whole-exome sequencing analyses of more than 1000 children
with IBD at a single center, we found that 3% had rare variants in
genes previously associated with pediatric IBD. These were
associated with different IBD phenotypes, and 1% of the patients
had variants that could be potentially corrected with allogeneic
hematopoietic stem cell transplantation. Monogenic IBD is rare,
but should be considered in analysis of all patients with pediatric
onset of IBD.

Keywords: HSCT; Genetics; Risk Factor; Prevalence.

Inflammatory bowel diseases (IBD), composed of
Crohn’s disease (CD), ulcerative colitis (UC), and IBD-

unclassified (IBD-U), are common chronic relapsing in-
flammatory conditions of the gastrointestinal tract that
affect both children and adults.1,2 Recent studies have
demonstrated that IBD is a global disease with a growing
prevalence in developed countries and accelerating inci-
dence in newly industrialized countries.3 It has been esti-
mated that IBD develops during childhood or adolescence in
>25% of patients.4 Canadian health administrative data
showed that IBD incidence continues to increase rapidly
throughout the pediatric age range, with the greatest in-
crease in children diagnosed before 5 years of age.5

Genome-wide association studies have identified >230
risk loci6–8 explaining only 20%–25% of genetic heritability
in complex adult-onset IBD.9 As with other complex disor-
ders, host genetics are recognized to play a more predom-
inant role in younger children termed very early onset IBD
(VEOIBD; defined as diagnosis before 6 years of age).10,11

Next-generation sequencing,12 including whole-exome
sequencing (WES), is now used clinically to investigate
monogenic causes in complex diseases,13,14 including
VEOIBD.15 Utilizing WES, a number of genetic disorders
associated with VEOIBD16,17 (termed monogenic IBD for this
study; see Supplementary Table 1 for detailed list of
monogenic IBD genes) have been identified. Monogenic IBD
genes are categorized into those resulting in epithelial18

and/or immune16,17 defects and knowledge of tissue-
specific gene expression and protein function is critical in

determining precision treatment approaches.15 Curative
allogeneic hematopoietic stem cell transplantation (HSCT) is
now considered standard of care for select patients with
functionally validated immune-related monogenic IBD
defects.17

The prevalence of monogenic IBD across the full age
range (0–18 years) of pediatric IBD is unknown. Therefore,
the primary aim of this study was to use WES to interrogate
the currently known monogenic IBD genes to determine the
prevalence in a single-center cohort of 1005 pediatric IBD
patients diagnosed before 18 years of age and identify
phenotypic characteristics predictive of monogenic disease.

Methods
Detailed methods and clinical descriptions are provided in

Supplementary Material (Supplementary Tables 1–11 and
Supplementary Figures 1–6).

Patient Population
The study was conducted with Research Ethics Board (REB

1000024905) approval at the Hospital for Sick Children
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(SickKids). The SickKids IBD Center is the only IBD primary
care and referral center for the greater Toronto area and most
children in the greater Toronto area with IBD are both diag-
nosed and followed at SickKids. All IBD patients (and families)
diagnosed and/or followed at SickKids younger than 18 years
were eligible for inclusion regardless of disease severity or age
of diagnosis and enrolled during a 13-year period (2003–2015;
Table 1 and Supplementary Tables 2–4 for cohort characteris-
tics). Inclusion criteria were being diagnosed with IBD between
0 and 18 years of age and followed at the SickKids. Exclusion
criteria were IBD with known chromosomal abnormalities,
diagnosed syndromic disease, previous diagnosed primary im-
munodeficiency, referral for a second opinion from other re-
gions of Canada, diagnosed with other forms of monogenic
intestinal disease, and refusal to consent for genetics for any
reason.

DNA Extraction
Genomic DNA was extracted from peripheral venous blood

samples collected in EDTA. DNA concentration was estimated
using the Qubit 2.0 Fluorometer and a 260:280 ratio calcu-
lated using a NanoDrop spectrophotometer. The mean DNA
yield obtained was 150 mg/mL, and approximately 2 mg of
each patient DNA was extracted for next-generation
sequencing.

Whole-Exome Sequencing
WES was carried out using high-quality genomic DNA that

was mechanically fragmented by adaptive focused acoustic
technology to a mean size of approximately 150 base pairs. The
sheared libraries were prepared for exome capture using a
custom-designed, highly automated approach to produce a

library appropriately indexed for pooled exome capture and
sequencing. The exomes were captured with the NimbleGen
VCRome 2.1 reagent. The probe set targets 42 Mb of DNA
covering the Vega, CCDS, and RefSeq gene models, microRNAs,
and some regulatory regions. Captured samples were poly-
merase chain reaction–amplified to ensure that exome enrich-
ment and genome de-enrichment were successful. Samples that
pass quality control were sequenced on the Illumina HiSeq
2500 platform using paired-end 75 bp reads and two indexing
reads.19

Whole-Exome Sequencing and Bioinformatics
Pipeline

WES was performed in collaboration with the Regeneron
Genetics Center. Regeneron Pharmaceuticals did not contribute
to the data analysis, interpretation of findings, or writing of this
article. Genes were selected based on known association with
monogenic IBD (outlined and referenced in Supplementary
Table 1). Genes identified as risk or without validated mono-
genic association were not included in this analysis. The data
files were processed using the Care4Rare bioinformatics pipe-
line at SickKids, which is composed of the following compo-
nents; alignment, variant calling, and annotation. Sequencing
reads were aligned to human reference genome (GRCh38/
hg38) using BWA-mem (Burrows-Wheeler Aligner, version
0.7.12) followed by indel realignment using Genome Analysis
Toolkit (GATK, version 3.5), marking polymerase chain reaction
duplicates using Picard and base recalibration by GATK. A BED
file corresponding to the library preparation capture kit was
used in the pipeline to limit the analysis to exonic intervals. The
following variant callers were run on the BAM files of each
family to produce family-based VCF files: GATK Hap-
lotypeCaller20 (version 3.5), Vardict21 (version 1.4.6), Varscan22

Table 1.Phenotypic Characteristics of Probands in the Sequenced Cohort and the Monogenic Cohort

Characteristic
Total pediatric
IBD Cohort

Non-monogenic
pediatric

IBD Cohort

Monogenic
pediatric

IBD Cohort
OR

(95% CI)
Bonferroni
P Value

Total n 1005 974 31 — —

Age at diagnosis, y, median (IQR) 11.96 (8.96–14.21) 12.04 (9.05–14.25) 10.83 (3.45–12.53) — .12
Age at diagnosis, 0–1.9 y (infantile), % 2.9 2.5 13 6.30 (1.98–20.08) .020
Age at diagnosis 2–5.9 y (VEOIBD), % 11.2 10.7 22 2.62 (1.06–6.46) .405
Age at diagnosis 6–9.9 y (EOIBD), % 17.8 18.3 10 0.67 (0.20–2.32) 1
Age at diagnosis 10-17.9 years, % 68.1 68.5 55 — —

Sex (% male), % 60 59.6 71 1.65 (0.78–3.82) 1
Family history of IBD, % 32 31.7 42 1.55 (0.74–3.19) 1
First-degree family history of IBD, % 14 14 7 0.41 (0.07–1.40) 1
Family history of autoimmune disease, % 7 6.3 26 5.12 (2.07–11.48) .002
Disease type, % CD 59

UC/IBD-U 41
CD 60

UC/IBD-U 40
CD 55

UC/IBD-U 45
— —

Any EIM, % 11 9.3 61 15.36 (7.31–33.52) <.0001
>1 EIM, % 3.3 2.6 26 13.20 (5.13–31.51) <.0001
Progression to biologic therapy, % 38 38.2 32 0.77 (0.34–1.62) 1
Progression to surgical therapy, % 9.8 9.2 26 3.42 (1.40–7.57) .042

NOTE. Comparisons are made between monogenic and non-monogenic groups. OR estimates and their 95% confidence
intervals (CIs) were computed using logistic regression models (refer to Supplementary Materials). P values in bold type are
statistically significant (P < .05 after Bonferroni correction).
EIM, extra-intestinal manifestation; EOIBD, early onset inflammatory bowel disease; IQR, interquartile range.
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(version 2.3.9), Samtools23 (version 1.3), and Freebayes24

(version 1.0.0). An ensemble approach using bcbio.var-
iation.recall (https://github.com/bcbio/bcbio-nextgen) was
then used where only variants called by 2 or more variant
callers were retained. Annovar (annovar/2016.02.01) was used
to annotate the VCF files (Supplementary Table 6A).25 These
files were subsequently normalized with the vt tool26 and
further annotated with Ensembl VEP27 (version 82). VCF28

anno added the annotations in Supplementary Table 5A and
B. The vcf2db program (https://github.com/quinlan-lab/
vcf2db) was then used to generate GEMINI29 (-compatible da-
tabases from family-based VCF files. GEMINI was used to query
the different inheritance models in Supplementary Table 5C
using the filters in Supplementary Table 5D. Further quality
assessment measures are outlined in the Supplementary
Materials (Supplementary Figures 1A–C and 2).

Coverage Analysis
In order to assess the read depth of the exonic intervals for

the 67 VEOIBD genes, the average coverage values from the
sample_interval_summary file, generated by the GATK Dep-
thOfCoverage tool, were extracted for all 2309 samples. Using
custom Python and R scripts, coverage box-plots were gener-
ated for each VEOIBD exonic interval (Supplementary
Figure 1C); median read depth was 78.0.

Sequencing Quality Assessment
Sequencing Quality Assessment is outlined in

Supplementary Figures 1 and 2. Transition to transversion ra-
tios per sample were obtained using the bcftools30 (version 1.6)
stats tool. The number of variants called according to functional
consequence estimated using Ensembl VEP, version 75. Func-
tional variants included: stop gained, splice donor and accep-
tors, frameshift, missense, inframe insertion and deletions,
initiator codon and splice region variants. The distribution of
total number of variants per sample along with the number of
heterozygous and homozygous variants were calculated. Sex
analysis was performed, by investigating the number of ho-
mozygous and heterozygous variants in X chromosome for both
male and females. When assessing the number of heterozygous
variants in X chromosome, 5 outliers were identified; 1 was
incorrectly coded in the database and 4 were subsequently
excluded from further analysis. The coefficient of inbreeding
was calculated using plink (version 2.0) software. We applied
the “Plink –make-king” tool to the project-level merged VCF file
containing all the variants of the entire dataset. Only autosomes
were considered by the program. The spouse pairs showing a
high coefficient of inbreeding value (>0.7) were reviewed for
consanguinity. The genotype quality of variants were extracted
from merged VCF file using a custom script and the distribution
was plotted as a box plot.

Sanger Sequencing
Selected variants predicted to be pathogenic and assessed

as deleterious by annotation tools outlined above were verified
by Sanger sequencing in probands and relatives if sufficient
DNA was available. Primers were designed using primerBLAST
and polymerase chain reaction was performed in our research
laboratory. The Sanger sequencing service was provided by
ACGT (Toronto, ON, Canada).

Genotype Phenotype Analysis
After high-quality filtering, each patient deemed to have a

protein coding or splice variant that was high quality and rare
(minor allele frequency < 0.01) were reverse phenotyped. This
meant that clinical data were extracted from the database with
deep phenotyping performed on any outstanding clinical de-
tails via access to an electronic medical record system. Immune
and pathology workup was clinically driven, and results were
accessed on the electronic medical system.

Paris Classification
Accurate phenotype classification is essential in determining

the utility of genotype-phenotype correlation. The Paris Classifi-
cation (Supplementary Table 4) was developed by a group of
experts in pediatric IBD in 2009.31 This was an update on the
previously published Montreal Classification of IBD.32 The Paris
Classification considers age at diagnosis (A1a <10 years, A1b 10–
17 years), location (L1 distal 1/3 ileum ± limited cecal disease;
L2 colonic, L3 ileocolonic, L4 isolated upper disease) and
behaviour of disease (B1 nonstricturing, nonpenetrating; B2
stricturing; B3 penetrating; p perianal disease modifier), along
with consideration of linear growth impairment (G0 no evidence
of growth delay, G1 growth delay). This aims to capture the more
dynamic features of the pediatric IBD phenotype resulting in
uniform standards for defining IBD phenotypes.

Statistical Methods
Descriptive statistics were provided with medians and

interquartile range for continuous variables. Mann-Whitney U
test was used for non-normally distributed continuous vari-
ables. Chi-square or Fisher’s exact test was applied for cate-
gorical variables. Categorical variables were compared by
calculating an odds ratio (OR) using logistic regression models.
For the analysis of age in pediatric IBD cohorts, the age group
10–17.99 years was used as the baseline level, to which other
age groups were compared using logistic regression. Results
were considered statistically significant when P < .05 after
Bonferroni correction for multiple testing. Statistical analyses
were performed by using the SPSS software, version 22.0 (SPSS,
Chicago, IL), as well as the R function glm and R package nnet
for logistic regression modeling.

Results
Cohort Characteristics

In total, 2305 (99.8%) participants (1005 pediatric IBD
patients, and 1300 parents and siblings) were analyzed (4 of
2309 individuals failed quality control; Figure 1A,
Supplementary Table 2). Forty-nine percent of pediatric IBD
patients were part of complete trios (patient and both of
their parents) including 26 quads (trio plus sibling;
Figure 1B) and 77% of patients had at least 1 first-degree
family member sequenced (including 105 affected first-
degree family members; Supplementary Tables 2 and 3).
Pediatric IBD patients had a 1.5:1 male to female ratio and
were diagnosed with CD (n ¼ 601 [60%]) and UC/IBD-U
(n ¼ 404 [40%]) (Supplementary Table 4). The median
age at diagnosis was 11.96 years and the median age at
symptom onset was 10.65 years (Table 1; see age
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distribution of the patients in Figure 1B, Supplementary
Table 4). Principal component analysis of the cohort
demonstrated broad ethnic diversity including European,
East Asian, or South Asian ethnicity (Figure 1C,
Supplementary Figure 2, and Supplementary Table 5E).

Identification of Rare Damaging Variants in
Monogenic Inflammatory Bowel Disease Genes

GEMINI analysis and initial filtering of the WES data was
based on rare, protein coding variants, deleterious pre-
dictions, and damaging scores (including combined
annotation-dependent depletion score >1533) and a sec-
ondary manual filtering based on confirmatory inheritance
pattern, segregation, concurrence with clinical features
associated with phenotypes of known genetic disease, as
described in Supplementary Table 1, and pathogenicity was
based on the American College of Medical Genetics and
Genomics classification.34 In 31 (3%) of the 1005 pediatric
IBD patients, we identified 40 distinct rare damaging

variants in 21 of the known 67 monogenic IBD genes
(Table 2). Of the 31 patients with monogenic IBD variants,
23 patients (74%) were sequenced as trios, 4 patients
(13%) as incomplete trios, and 4 patients (13%) as single-
tons. All 40 predicted pathogenic monogenic IBD variants
were orthogonally validated using Sanger sequencing (data
not shown) and transmission was confirmed to be either
autosomal dominant, autosomal recessive (all bi-allelic), or
X-linked recessive. Functional de novo variants in the IBD
monogenic genes were not identified in any patient in this
cohort. Functionally, 67% were missense variants and 32%
were predicted loss-of-function alterations, stop-gained,
frameshift, splice-site, or in-frame indels (Table 2,
Figure 2A). As shown in Figure 2B, among the 31 children
harboring variants in known monogenic IBD genes, those
most represented were XIAP (5 of 31 [16%]); DOCK8 (3 of
31 [10%]); ARPC1B, FOXP3, GUCY2C, and LRBA (2 of 31
[6%]). Overall, 3% of the 1005 pediatric IBD patients were
suspected to have disease-causing variants in monogenic
IBD genes.

Figure 1. Flowchart of WES pediatric IBD study. (A) Flowchart of WES in pediatric IBD study; 1,644,648 variants were called.
Following variant prioritization 1,124,679 were ExAC MAF < 0.01 and 379,588 high/med impact severity. Variants then un-
derwent GEMINI Pedigree Analysis and inheritance modeling. In the known monogenic IBD genes 5 were autosomal domi-
nant; 6 autosomal recessive; 9 compound heterozygotes (note compound heterozygotes in Table 2 is denoted by autosomal
recessive a/b); and 11 X-linked recessive (XL) inheritance. (B) Familial inheritance-based analysis by age group of the
sequenced cohort. Bar graph displays the sequencing of the cohort based on singletons (probands alone); incomplete trios;
complete trios; complete quads by age group. A “trio” is defined as a sequenced proband and both parents. An “incomplete
trio” is a proband and any relative. A “complete quad” is a proband, both parents and a relative. (C) Principal component
analysis. Ethnic diversity demonstrated among the cohort.

2212 Crowley et al Gastroenterology Vol. 158, No. 8

BASIC
AND

TRANSLATIONAL
AT



Table 2.Variants Identified Among Monogenic Inflammatory Bowel Disease Genes

Biological
category Patient Sex

Age at
diagnosis Chrom Gene

Inheritance
model aa mutation Impact ExAC maf

CADD 1-3
Phred score

Family
history

Reported
Inheritance

Causal
evidence

Epithelial barrier &
response
defects

1 M 15 chr2 ALPI AR a A360V missense 0.0006363 26.8 þ AR G, F, P
AR b Q439X stop gained 0.0001295 29.7

2 F 11.91 chr3 COL7A1 AR a R1696C missense 0.0003 28.7 - AR/AD
(milder)

P
AR b R523W missense None 25.5

3 M 12.3 chr12 GUCY2C AD G549S missense 0.000045 33 þ AD N/A
4 F 15.1 chr12 GUCY2C AD F525L missense 0.000067 25.5 - AD N/A
5 M 11.38 chr3 SLCO2A1 AR a R314W missense 0.0000164 26.2 - AR P

AR b M539V missense 0.0003 27.1
6 F 0 chr2 TTC7A AR a E71K missense 0.0000082 34 - AR G, F, P

AR b Q526X stop gained 0 36 AR
T and B cell

differentiation
defects

7 M 2.75 chr7 ARPC1B AR A105V missense 0 25.1 - AR G, F, P
8** M 3.5 chr7 ARPC1B AR V91WfsX121 frameshift 0 none - AR G, F, P
9 M 15.52 chrX BTK XL N484K missense 0 23 - XL F, P
10 M 5.5 chrX DKC1 XL T49M missense 0 26 - XL G, F, P
11 F 12.38 chr9 DOCK8 AR a splice 0.0000411 35 - AR/AD

(milder)
G, P

AR b S97L missense 0.0005 26.4
12 F 14.73 chr9 DOCK8 AR a R947C missense 0.0007 22.6 þ AR/AD

(milder)
P

AR b R532Q missense 0.0000414 26.4
13 F 14.65 chr9 DOCK8 AR a R59H missense 0.0021 26.7 þ AR/AD

(milder)
P

AR b Y19C missense 0 22.1
14 M 1.63 chr4 LRBA AR V737I missense 0.0002 23.2 - AR P
15** M 9.33 chr4 LRBA AR* E1916X missense 0 None - AR G, F, P
16 F 2.5 chr2 STAT1 AD V389A missense 0 19.69 - AD G, F, P

Hyper- & Auto-
inflammatory
disorders

17 M 14 chr10 HPS1 AR a E9D missense 0.0016 20.4 þ AR p
AR b Y81F missense 0.0000695 23.4

18 M 12.75 chr1 PIK3CD AD V616A missense 0.0000083 27.1 þ ˇ

AD N/A
19** M 8.4 chrX SH2D1A XL M1T start Met loss 0 23.4 - XL G, F, P
20 M 11.86 chrX XIAP XL R29K missense 0 25.7 þ XL P
21 M 9.1 chrX XIAP XL S278X stop gained 0 37 þ XL G, P
22 M 10.83 chrX XIAP XL A216T missense 0 25.6 þ XL P
23 M 10.67 chrX XIAP XL DE349 inframe deletion 0.0004 None - XL G, P
24** M 0 chrX XIAP XL V298fsX306 frameshift 0 None - XL G, F, P
25** M 3.4 chrX CYBB XL A84A splice 0.000012 19.34 - XL G, F, P

Regulatory T cells
and immune
regulation

26 M 12 chr2 CTLA4 AD splice 0 28 - AD G, P
27 M 3.05 chrX FOXP3 XL L198P missense 0 24.4 þ XL F, P
28 M 12.68 chrX FOXP3 XL H121Y missense 0.0000782 21 þ XL F, P
29** F 0.17 chr21 IL10RB AR W3X stop gained 0 27.6 þ ˇ

AR G, F, P
Others 30 F 4.42 chr2 HSPA1L AR K495EfsX13 frameshift 0.0003 None - G, P

31 M 12.26 chr1 MASP2 AR a D244N missense 0.000068 28.7 þ AR N/A
AR b W513C missense 8.24E-06 24.7

þ, yes; –, no;

ˇ

, first degree; aa, amino acid; AD, autosomal dominant; AR, autosomal recessive; ARa/ARb, compound heterozygous; CADD, combined annotation
dependent depletion; Chrom/chr, chromosome; F, functional; G, genetic; P, pathology; XL, X-linked recessive.
**Patient had allogeneic HSCT.
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Functional Validation
While in silico pathogenicity of variants identified using

WES was based on combined annotation-dependent deple-
tion score,33 inheritance pattern, impact, frequency, and the
American College of Medical Genetics and Genomics classi-
fication,34 we attempted to further validate each variant
through retrospective clinical assessment of the probands,
functional testing, and/or pathologic examination of biopsy
samples (Tables 2 and Supplementary Tables 6–8, and

Supplementary Figures 3–6 for detailed review of each pa-
tient). All patients had clinical evidence supporting the
known monogenic disease phenotype (clinical features5,16

are outlined in Supplementary Table 1 and detailed for
each patient in Supplementary Table 8), although some
patients had milder or incomplete forms of the disease as
previously demonstrated in patients with monogenic-forms
of IBD.15 The majority of patients had multiple levels of
support, including 16 patients with genetic support of

Figure 2. Characteristics of identified monogenic IBD population. (A) Variant type. Variant types identified using WES in the
pediatric IBD cohort. (B) Gene variants identified on WES analysis. Graph demonstrates gene variants with the most common
highlighted in bold. (C) Age at diagnosis as per variant class. Epithelial barrier response defects; T- and B-cell differentiation
defect; hyper- and auto-inflammatory disorders; regulatory T cells and immune regulation; and other. Colors represent the
color used in Table 2. (D) Age at diagnosis of IBD and disease phenotype. Graph displays monogenic pediatric IBD variant
diagnosed in VEOIBD age group (35%) indicated by blue line and older than 10 years of age (55%) (Paris 1b) indicated by red
line. (E) Odds ratio analysis of phenotypic features of identified monogenic IBD. ORs and their confidence intervals (CIs) were
computed using logistic regression models (see Supplementary Materials). AI, autoimmune; EIM, extra-intestinal manifesta-
tion; FHx, family history. Each horizontal line represents the 95% CI for OR (red dot). Dashed line indicates expected value of
1.0. *Statistical significance (P < .05 after Bonferroni correction). (F) Age at HSCT. Age of patient at time of HSCT (in years) with
identified monogenic IBD variant in ARPC1B (patient 8), IL10RB (patient 29), LRBA (patient 15), SH2D1A (patient 19), XIAP
(patient 24). Green line refers to age of diagnosis of IBD. Red line refers to age of monogenic diagnosis. Blue line refers to age
of HSCT.
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causality with either known ClinVar pathogenicity and/or
loss-of-function variants. Functional testing including pro-
tein expression, immunological testing, and biochemical
assays were carried out in 14 patients, including 3 patients
without further genetic evidence. To provide additional
support for the patients without available clinical testing,
samples were examined for both known histologic features
of disease35 and protein expression/localization based on
known RNA/protein expression defined by Protein Atlas
(www.proteinatlas.org). We identified either pathological
features associated with monogenic disease and/or altered
protein staining in all 27 patient samples examined,
including 8 patients without other supporting genetic or
functional evidence (Supplementary Figure 3–6). Therefore,
only 4 patients with variants in 3 genes (GUCY2C, PIK3CD,
and MASP2) did not have supporting evidence, as these 3
genes had neither clinical functional tests nor validated
antibodies available to examine pathology. Together this
further supports the in silico prediction in 27 of 31 patients
and the role of these genes in the development of IBD.

Implications of Genetic Diagnoses
Demographic and phenotypic clinical characteristics of

the probands with putative monogenic IBD are summarized

in Table 3 and Supplementary Table 8 for detailed pheno-
typing. Figure 2C and D and Table 1 showed that in the
monogenic group the median age at diagnosis was 10.83
years and median age of symptom onset of 9.69 years and
20 of 31 patients (64%) were diagnosed at older than 6
years of age. In the monogenic IBD variant group, 71% were
male, 17 (55%) were diagnosed with Crohn’s disease, and
14 (45%) were UC/IBD-U (Figure 2D). The presenting
clinical features for monogenic CD patients (n ¼ 17) were
abdominal pain (35%), nonbloody loose stool (24%), vom-
iting (18%), weight loss, (18%), and intermittent bloody
loose stool (5%) (Table 3). The monogenic UC/IBD-U pa-
tients (n ¼ 14) were diagnosed at a younger age and the
most predominant presenting clinical feature was bloody
loose stool (78%) (Supplementary Table 3). Features asso-
ciated with monogenic disease in comparison to the
remaining pediatric IBD cohort were age of onset of disease
younger than 2 years (OR, 6.30; P ¼ .022), family history of
autoimmune disease (OR, 5.12; P ¼ .002), extra-intestinal
manifestations of IBD (OR, 15.36; P < .0001) and surgery
(OR, 3.42; P ¼ 0.046) (Figure 2E and Table 1).

In total, 17 of 31 monogenic IBD patients (>1% of total
cohort) had variants in genes known to be amenable to
allogeneic stem cell transplant (ARPC1B, IL10RB, LRBA,

Table 3.Phenotypic Features of Identified Monogenic Inflammatory Bowel Disease Cohort

Monogenic cohort (n ¼ 31) CD UC/IBD-U

Disease class, n 17 14
Sex, % male 82 57
Age at diagnosis, y, median (IQR) 12 (9.5-12.7) 3.9 (0.9-11.5)
Age at diagnosis, 0–5.9 y (VEOIBD), n (%) 2 (6) 9 (29)
Age at diagnosis, 6–9.9 y (EOIBD), n (%) 2 (6) 1 (4)
Age at diagnosis, 10–17.9 y, n (%) 13 (42) 4 (13)
Most common presenting feature, % Abdominal pain 35 Bloody loose stool 78
Extra-intestinal manifestation, % 76 42
Family history, IBD, % 58 21
Family history, autoimmune disease, % 29 21
Personal history, autoimmune disease, % 23 35
Consanguinity, % 0 14
Ethnicities, % Caucasian 70 Caucasian 37

South Asian 18 African 21
East Asian 6 Mixed 21

Mixed 6 East Asian 14
South Asian 7

Abnormality on immune workup, % 18 28
Serology, % Positive ASCA 17 ANCA positive 36

Positive ANA 6 ANA positive 14
Endoscopy, % L3 35 E4 42

L3L4a 29 E3 28
L3L4b 12 E2 7
L2 12 Limited due to disease severity 23
L1 12

Histopathology, % Granulomatous inflammation, 35 Apoptosis 28
Therapies, % Surgery 29 Surgery 21

Biologic agent 53 Biologic agent 14
HSCT 12 HSCT 28
Other 6 Other 37

Outcome — 1 death

ANA, anti-nuclear antibody; ANCA, anti-neutrophil cytoplasm antibodies; ASCA, anti-saccharomyces cerevisiae antibodies
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SH2D1A, XIAP, CYBB, CTLA4, STAT1, BTK, and FOXP3;
Supplementary Table 9). All 17 patient/families via their
most responsible physicians (including those transitioned to
adult care) were informed of the genetic variants and pa-
tients are undergoing clinical genetic validation and coun-
seling where appropriate, as some patients had milder
disease and transplantation may not be a recommended or
preferable treatment option. Six patients (19% of mono-
genic IBD cohort) already had allogeneic HSCT (Table 2 and
Supplementary Table 8: patient 8, ARPC1B; patient 29,
IL10RB; patient 15, LRBA; patient 19, SH2D1A; patient 24,
XIAP; patient 25, CYBB; all unpublished; patient 25 was
transplanted elsewhere and not included in the subsequent
analysis). The median age at transplantation in these 5 pa-
tients was 11.5 years (interquartile range, 0.45–12.62
years), and there was often a delay between onset of disease
and ultimate genetic diagnosis and HSCT (Figure 2F). Of
note, monogenic epithelial IBD or combined epithelial-
immune defects (ie, TTC7A deficiency and the 1 death in
this study population; patient 636) may not respond to HSCT
or biologic therapies and may present specific therapeutic
challenges.37

Discussion
In this single-center cohort study of 1005 pediatric IBD

patients we utilized WES to determine a 3% prevalence of
damaging variants in genes linked to monogenic IBD. A
number of studies have shown an estimated prevalence of
monogenic IBD between 0 to 70%38–44 (reviewed in
Supplementary Table 10). However, these studies are diffi-
cult to compare as they examine only subsets of monogenic
IBD genes and use a number of sequencing methodologies,
including genetic panels, WES, and mixed methodologies.
Moreover, these studies may have significant selection bias,
as the highest rates of monogenic disease are within cohort
studies of patients referred with severe disease and/or very
young age of onset increasing the likelihood to identify
monogenic disease. Before our study, few studies have
examined older pediatric patients in a systematic way. In
Toronto, Canada, there are very few community pediatric
gastroenterologists; therefore, the vast majority of pediatric
IBD patients in the greater Toronto area (catchment area
population of approximately 6 million) are diagnosed and
followed until 18 years of age at SickKids and make up the
cohort described here. This patient cohort is a major
strength of this study, as it is a large heterogeneous, multi-
ethnic, well-characterized, unselected cohort of children
diagnosed from a single pediatric IBD center and patients/
families were enrolled regardless of age of diagnosis and
disease severity. Another strength of our pediatric IBD
cohort was that the majority of patients had at least 1 family
member sequenced allowing for family-based genetic
analysis.

The frequency of monogenic variants in VEOIBD (7.8%)
reinforces that exome sequencing should become part of
standard of care for this group of patients diagnosed with
IBD, especially children diagnosed younger than 2 years of
age. Pediatric gastroenterologists may screen for monogenic

forms of IBD in very young children; however, previous
studies have not ascertained the prevalence of these genes
across the entire pediatric age range. As described, most
monogenic IBD studies have focused only on very young
children or young children with the most severe forms of
disease,38,40,45,46 while this study examined an unbiased
cohort of patients and extends the age of onset of mono-
genic IBD throughout the pediatric age range. Another key
finding of our study was that 64% (20 of 31) of the
monogenic pediatric IBD patients presented after 6 years of
age. We found an unexpected prevalence of 2.3% of
monogenic variants in all children aged 6 years and older.
For these older children, the phenotypic features, including
extra-intestinal manifestations of IBD and family history of
autoimmune disease, may be used to select patients for
consideration of WES analysis.

For each monogenic disorder associated with chronic
IBD, the bowel inflammation often has variable penetrance
and is only 1 component of a disease that may manifest with
a wide spectrum of phenotypes15–18,47–49 (Supplementary
Table 1). Detailed phenotyping of each patient with a
monogenic IBD variant (Supplementary Tables 8A–U,
Supplementary Figures 4–6) suggests that within each
group of genes, the phenotypic variation is likely due to the
genetic heterogeneity of disease-causing variants, genetic
disease modifiers, and undetermined environmental factors.
Interestingly, Huang et al50 demonstrated that patients with
chronic granulomatous disease who developed IBD had a
higher polygenic risk score for IBD genome-wide association
studies variants when compared to chronic granulomatous
disease patients without IBD. We similarly developed a
polygenic risk score and compared non-IBD controls (n ¼
7492), Toronto cohort patients with monogenic IBD variant
carriage (n ¼ 31), and Toronto cohort IBD patients without
monogenic IBD variant carriage (n ¼ 974). However, we did
not identify any significant differences in polygenic risk
score between Toronto cohorts maybe due to the small
number of patients with each type of monogenic disease
(data not shown). It is interesting to speculate that IBD
genome-wide association studies risk variants coupled to
environmental factors are driving the IBD presentation in
some patients with monogenic forms of disease. Overall, our
findings suggest a wide heterogeneity in monogenic IBD
clinical presentations with earlier age of onset, a family
history of autoimmune disease, extra-intestinal manifesta-
tions of IBD, and surgery as indicators of monogenic disease
(Table 1, Figure 2E). However, these features are common in
pediatric IBD and detailed phenotyping of the monogenic
cohort may have resulted in an over-representation in these
patients.

Special consideration should be given to specific gene
expression of epithelial vs immune monogenic forms of IBD
(Table 2, Figure 2C). The intestinal epithelial barrier is
composed of a layer of columnar cells that function as a
gateway between the gut lumen and the lamina propria. Of
those epithelial defects purported to be associated with
monogenic IBD,18 we identified ALPI, COL7A1, TTC7A,
GUCY2C, and SLCO2A1 in our cohort. Variants in these genes
may cause perturbations in the epithelial barrier leading to
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immune dysregulation resulting in IBD.18 This group of
patients present a clinical challenge as there are no specific
epithelial treatments available that improve the epithelial
barrier dysfunction and HSCT is not a viable treatment
option. However, a recently published preclinical study has
identified leflunomide as a potential therapy for TTC7A-
deficiency.51

We also identified monogenic immune IBD genes
involved in a number of cellular processes outlined in
Table 2 and Figure 2C and each patient discussed in detail in
Supplementary Figures 4–6. For example, we identified
variants in T- and B-cell differentiation including BTK
(Supplementary Figure 4) and DOCK8. DOCK8 has diverse
roles in the immune system, including regulation of the actin
cytoskeleton and can present from infancy to adulthood
with variable symptoms including severe infections, atopy,
autoimmunity, cancer, and IBD.52 In this study, 3 patients
had bi-allelic DOCK8 variants with clinical features consis-
tent with DOCK8-deficiency (Supplementary Table 8H,
Supplementary Figure 3G), including eczema and food al-
lergy although they did not have truncating variants clas-
sically associated with this disease. FOXP3 is a transcription
factor that is specifically expressed in regulatory T cells,
which play a critical role in T-cell tolerance.53,54 Variants in
FOXP3 can lead to X-linked, immune dysregulation, poly-
endocrinopathy, and enteropathy, IPEX syndrome. In this
study, 2 male patients with chronic colitis and other auto-
immune and extra-intestinal features were identified
(Supplementary Table 8I, Supplementary Figure 5). Variants
in XIAP cause an X-linked recessive disorder with a widely
reported age of onset and diverse phenotypes including
infantile onset and predisposition to hemophagocytic lym-
phohistiocytosis and lymphoproliferative syndrome. Zeissig
et al55 reported XIAP variants in 4% of all male pediatric CD
patients. Here we demonstrated that 1% (5 of 391) of male
pediatric CD patients had XIAP variants of which 1 patient
with a V298fsX306 XIAP variant was successfully trans-
planted and currently has no active disease (patient 24,
Table 2, Supplementary Table 8U, and Supplementary
Figure 6A).

A major difficulty in utilizing genetics in clinical care of
children with IBD is the lack of standardized functional
testing. This is a critical step in precision medicine, espe-
cially when recommending major alternative treatment
strategies, such as allogeneic bone marrow transplant in
patients with primary immunodeficiencies genes associated
with monogenic IBD16 or palliation in patients with severe
forms of TTC7A-deficiency56 or PLVAP-deficiency.57 There
are a few genes where the protein product can be easily
assayed. For example, in IL10R deficiency STAT3 phos-
phorylation can be measured after IL10 stimulation58 and
reactive oxygen species can be measured in chronic gran-
ulomatous disease, although disease-causing variants in
NCF4 may have normal reactive oxygen species produc-
tion.59 While for others genes, only experimental biochem-
ical assays are available in selected research laboratories,
for example, XIAP,60 TTC7A,36 and ARPC1B.61 Protein
expression of a number of monogenic IBD genes associated
with primary immunodeficiencies can be measured using

flow cytometry-based assays, such as LRBA, FOXP3, and
XIAP17; however, missense variants, which may result in
normal gene expression and deleterious protein function
will not be identified using this methodology. In an attempt
to further validate causative variants, we utilized a combi-
nation of genetic, functional and/or pathological ap-
proaches; however, further standardized testing is
necessary for all patients with monogenic IBD variants and
critical for those with variants potentially amenable to
allogeneic HSCT. Furthermore, when functional testing is
not available, as with most of the variants described here,
patients must be fully informed of the inherent risks of
genetic interpretation on therapeutic decisions.

There are limitations with the WES methodology used in
this study with approximately 5% of exons are poorly
covered12 (see Supplementary Figure 1B for exon coverage of
monogenic IBD genes). In this study, this limitation was
illustrated by the poor WES coverage of exon 1 in SH2D1A.
Using manual review of rawWES data and Sanger sequencing
validation, we identified a variant (M1T) resulting in the loss
of the start methionine in exon 1 of SH2D1A in a patient with
severe ileitis, colitis, and growth failure (patient 19, Table 2
and Supplementary Table 8Q, Supplementary Figure 6A).
The identification of this SH2D1A variant resulted in curative
HSCT for this patient. Also WES does not cover noncoding yet
potentially functional regions of the genome and has limited
capacity to identify copy number changes and structural
variants.12 Furthermore, there has been a rapid increase in
the discovery of monogenic IBD genes47 and we anticipate
that many more genes will be discovered. Therefore, this
study likely underestimates the contribution of monogenic
gene disorders in pediatric IBD.

Overall, this single pediatric IBD center study supports a
3% prevalence of damaging variants in genes linked to
monogenic IBD. Most importantly, this study demonstrates
that 1% of monogenic pediatric IBD patients have variants
in genes associated with primary immunodeficiency that are
potentially curable through allogeneic HSCT
(Supplementary Table 9). We believe this data supports the
diagnosis of monogenic disease beyond the very early onset
IBD population, especially in children with a family history
of autoimmune diseases and those with evidence of extra-
intestinal manifestations of IBD. Molecular identification of
disease-causing variants in monogenic disease genes can
inform patient management and improve outcomes by tar-
geting definitive and personalized treatment strategies.

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2020.02.023.
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