8 research outputs found
The growth of faults and fracture networks in a mechanically evolving, mechanically stratified rock mass : a case study from Spireslack Surface Coal Mine, Scotland
Fault architecture and fracture network evolution (and resulting bulk hydraulic properties) are highly dependent on the mechanical properties of the rocks at the time the structures developed. This paper investigates the role of mechanical layering and pre-existing structures on the evolution of strike–slip faults and fracture networks. Detailed mapping of exceptionally well exposed fluvial–deltaic lithologies at Spireslack Surface Coal Mine, Scotland, reveals two phases of faulting with an initial sinistral and later dextral sense of shear with ongoing pre-faulting, syn-faulting, and post-faulting joint sets. We find fault zone internal structure depends on whether the fault is self-juxtaposing or cuts multiple lithologies, the presence of shale layers that promote bed-rotation and fault-core lens formation, and the orientation of joints and coal cleats at the time of faulting. During ongoing deformation, cementation of fractures is concentrated where the fracture network is most connected. This leads to the counter-intuitive result that the highest-fracture-density part of the network often has the lowest open fracture connectivity. To evaluate the final bulk hydraulic properties of a deformed rock mass, it is crucial to appreciate the relative timing of deformation events, concurrent or subsequent cementation, and the interlinked effects on overall network connectivity
Reaction-induced porosity fingering: replacement dynamic and porosity evolution in the KBr-KCl system
In this contribution, we use X-ray computed micro-tomography (X-CT) to observe and quantify dynamic pattern and porosity formation in a fluid-mediated replacement reaction. The evolution of connected porosity distribution helps to understand how fluid can migrate through a transforming rock, for example during dolomitization, a phenomenon extensively reported in sedimentary basins. Two types of experiment were carried out, in both cases a single crystal of KBr was immersed in a static bath of saturated aqueous KCl at room temperature and atmospheric pressure, and in both cases the replacement process was monitored in 3D using X-CT. In the first type of experiment a crystal of KBr was taken out, scanned, and returned to the solution in cycles (discontinuous replacement). In the second type of experiment, 3 samples of KBr were continuously reacted for 15, 55 mins and 5.5 hours respectively, with the latter being replaced completely (continuous replacement). X-CT of KBr-KCl replacement offers new insights into dynamic porosity development and transport mechanisms during replacement. As the reaction progresses the sample composition changes from KBr to KCl via a K(Br,Cl) solid solution series which generates porosity in the form of fingers that account for a final molar volume reduction of 37% when pure KCl is formed. These fingers form during an initial and transient advection regime followed by a diffusion dominated system, which is reflected by the reaction propagation, front morphology, and mass evolution. The porosity develops as fingers perpendicular to the sample walls, which allow a faster transport of reactant than in the rest of the crystal, before fingers coarsen and connect laterally. In the continuous experiment, finger coarsening has a dynamic behaviour consistent with fingering processes observed in nature. In the discontinuous experiment, which can be compared to rock weathering or to replacement driven by intermittent fluid contact, the pore structure changes from well-organized parallel fingers to a complex 3D connected network, shedding light on the alteration of reservoir properties during weathering
Measurement of diesel combustion-related air pollution downwind of an experimental unconventional natural gas operations site
Background & aim: Unconventional natural gas (UNG) extraction activities have considerable potential to affect air quality. However, there are few published quantitative observations of the magnitude of such impacts. To provide context, we compared measured exposures to diesel engine exhaust close to industrial fracking equipment at an UNG training simulation site in Łowicz, Poland to pedestrian exposures to traffic-related air pollution in the city centre of Glasgow, UK. Methods: We made mobile and static measurements at varying distances from sources in both of the above locations with a portable aethalometer (Aethlabs AE51) for black carbon (BC) and portable monitors (Aeroqual Series-500) for nitrogen dioxide (NO₂) and ozone (O₃). Duplicate BC measurements were compared with NO₂ observations, after correction of the NO₂ sensor response for O₃ interference effects. Results: Duplicate BC instruments provided similar real-time measurements (r = 0.92), which in turn were relatively highly correlated with NO₂ observations at 5-min temporal resolution at the UNG experimental site (r = 0.75) and on the walking route in Glasgow city centre (r = 0.64) suggesting common diesel sources for NO₂ and BC in both locations. Average BC and NO₂ concentrations measured approximately 10 m downwind of diesel fracking pumps were 11 and 113 μg/mᶟ respectively. These concentrations were approximately 37 times and 4 times higher than upwind background BC and NO₂ concentrations at the site; and approximately 3 times higher than average BC and NO₂ concentrations measured in traffic influenced areas in Glasgow. Conclusions: Marked elevations of BC and NO₂ concentrations were observed in downwind proximity to industrial fracking equipment and traffic sources. This suggests that exposure to diesel engine exhaust emissions from fracking equipment may present a significant risk to people working on UNG sites over extended time periods. The short time resolution of the portable instruments used enabled identification of likely sources of occupational and environmental exposure to combustion-related air pollutants
Cyclical hydraulic pressure pulses reduce breakdown pressure and initiate staged fracture growth in PMMA
Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the potential benefits of applying cyclical hydraulic pressure pulses to enhance the near-well connectivity through hydraulic fracturing treatment. Under unconfined and confined stresses, equivalent to a depth of up to 530 m, we use dynamic high-resolution strain measurements from fibre optic cables, complemented by optical recordings of fracture development, and investigate the impact of cyclical hydraulic pressure pulses on the number of cycles to failure in Polymethylmethacrylate at different temperatures. Our results indicate that a significant reduction in breakdown pressure can be achieved. This suggests that cyclic pressure pulses could require lower power consumption, as well as reduced fluid injection volumes and injection rates during stimulation, which could minimise the occurrence of the largest induced seismic events. Our results show that fractures develop in stages under repeated pressure cycles. This suggests that Cyclic Fluid Pressurization Systems could be effective in managing damage build-up and increasing permeability. This is achieved by forming numerous small fractures and reducing the size and occurrence of large fracturing events that produce large seismic events. Our results offer new insight into cyclical hydraulic fracturing treatments and provide a unique data set for benchmarking numerical models of fracture initiation and propagation
Seismic slip on the west flank of the Upper Rhine Graben (France-Germany): Evidence from tectonic morphology and cataclastic deformation bands
International audienc
Fault zone hydrogeology : introduction to the special issue
The impacts of fault zones on fluid flow within the Earth’s crust are notoriously difficult to characterize. Over the last several decades, structural geologists, petroleum engineers and hydrogeologists have investigated fault zones with the objective of understanding what factors and processes control fault zone hydraulic properties. Often these groups of researchers do not work together. One goal of this thematic issue is to highlight different investigation techniques (e.g. Bense et al. 2013) developed in one field that could be transferred into another discipline potentially shedding new light on long-standing research questions. This becomes especially significant when considering multiphase flow processes in faults such as in the context of CO2 storage or hydrocarbon production. A synergistic approach to fault zone hydrology research should narrow the gap in approaches and perceptions that exist across various research disciplines involved in the study of fault zone hydraulic properties. This special issue of Geofluids highlights ongoing work that jointly considers geological and hydrogeological aspects of fault zone properties
Cyclical hydraulic pressure pulses reduce breakdown pressure and initiate staged fracture growth in PMMA
Using unique experimental equipment on large bench-scale samples of Polymethylmethacrylate, used in the literature as an analogue for shale, we investigate the potential benefits of applying cyclical hydraulic pressure pulses to enhance the near-well connectivity through hydraulic fracturing treatment. Under unconfined and confined stresses, equivalent to a depth of up to 530 m, we use dynamic high-resolution strain measurements from fibre optic cables, complemented by optical recordings of fracture development, and investigate the impact of cyclical hydraulic pressure pulses on the number of cycles to failure in Polymethylmethacrylate at different temperatures. Our results indicate that a significant reduction in breakdown pressure can be achieved. This suggests that cyclic pressure pulses could require lower power consumption, as well as reduced fluid injection volumes and injection rates during stimulation, which could minimise the occurrence of the largest induced seismic events. Our results show that fractures develop in stages under repeated pressure cycles. This suggests that Cyclic Fluid Pressurization Systems could be effective in managing damage build-up and increasing permeability. This is achieved by forming numerous small fractures and reducing the size and occurrence of large fracturing events that produce large seismic events. Our results offer new insight into cyclical hydraulic fracturing treatments and provide a unique data set for benchmarking numerical models of fracture initiation and propagation
Validating the application of cyclic hydraulic pressure pulses to reduce breakdown pressure in granite
As the geoenergy sector moves towards more sustainable practices, an emerging field of research is the proposed utilisation of cyclic hydraulic pressure pulses to safely and efficiently enhance productivity. We demonstrate how cyclic hydraulic pressure pulses can reduce hydraulic breakdown pressure in granite using newly-developed experimental equipment, which applies pulsed square waves of fluid pressure to large bench-top samples, monitored with dynamic high-resolution fibre optic strain sensors. Our results show significant reduction in breakdown pressure can be achieved by cyclic pulsed pumping, and we explore the role of mean pressure and cyclic amplitude. Our results offer new insight into cyclic well stimulation treatments and show potential for reducing peak power consumption during geothermal exploitation