7 research outputs found

    Preservation and plasticity in the neural basis of numerical thinking in blindness

    Get PDF
    Numerical reasoning pervades modern human culture and depends on a fronto-parietal network, a key node of which is the intraparietal sulcus (IPS). In this dissertation I investigate how visual experience shapes the cognitive and neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. In Chapter 2, I ask how the cognitive basis of numerical thinking is shaped by visual experience. I test whether the precision of approximate number representations develops normally in the absence of vision and test whether the relationship between numerical approximation and math abilities is preserved in congenital blindness. In Chapter 3, I ask how the neural basis of symbolic number reasoning is modified by visual experience by studying neural responses to symbolic math in congenitally blind individuals. This initial investigation revealed that the fronto-parietal number system is preserved in blindness but that some “visual” cortices are recruited for symbolic number processing in blindness. The following chapters unpack these two patterns preservation and plasticity. In Chapter 4, I use resting-state data to ask whether functional connectivity with higher-cognitive networks is a potential mechanism by which “visual” cortices are reorganized in blindness. In Chapter 5, I work with individuals who became blind as adults to determine whether visual cortex plasticity for numerical functions is possible in the adult cortex or whether it is restricted to sensitive periods in development. In Chapter 6, I investigated whether the IPS and newly identified number-responsive “visual” area of congenitally blind individuals possess population codes that distinguish between different quantities. I find that the behavioral signatures of numerical reasoning are indistinguishable across congenitally blind and sighted groups and that the fronto-parietal number network, in particular the IPS, is preserved in the absence of vision. A dorsal occipital region showed the same functional profile as the IPS number system in congenitally blind individuals. Number-related plasticity was restricted to a sensitive period in development as it was not observed in adult-onset blind individuals. Furthermore, in congenital blindness, sub-specialization of the “visual” cortex for math and language processing followed the functional connectivity patterns of “visual” cortex

    Reduced Left Lateralization of Language in Congenitally Blind Individuals

    Get PDF
    Language processing depends on a left-lateralized network of frontotemporal cortical regions. This network is remarkably consistent across individuals and cultures. However, there is also evidence that developmental factors, such as delayed exposure to language, can modify this network. Recently, it has been found that, in congenitally blind individuals, the typical frontotemporal language network expands to include parts of “visual” cortices. Here, we report that blindness is also associated with reduced left lateralization in frontotemporal language areas. We analyzed fMRI data from two samples of congenitally blind adults (n = 19 and n = 13) and one sample of congenitally blind children (n = 20). Laterality indices were computed for sentence comprehension relative to three different control conditions: solving math equations (Experiment 1), a memory task with nonwords (Experiment 2), and a “does this come next?” task with music (Experiment 3). Across experiments and participant samples, the frontotemporal language network was less left-lateralized in congenitally blind than in sighted individuals. Reduction in left lateralization was not related to Braille reading ability or amount of occipital plasticity. Notably, we observed a positive correlation between the lateralization of frontotemporal cortex and that of language-responsive occipital areas in blind individuals. Blind individuals with right-lateralized language responses in frontotemporal cortices also had right-lateralized occipital responses to language. Together, these results reveal a modified neurobiology of language in blindness. Our findings suggest that, despite its usual consistency across people, the neurobiology of language can be modified by nonlinguistic experiences

    ANS_MVPA

    No full text

    Absence of visual experience modifies the neural basis of numerical thinking

    No full text

    An eye tracking investigation of color-location binding in infants' visual short-term memory.

    No full text
    Two experiments examined 8- and 10-month-old infants' (N = 71) binding of object identity (color) and location information in visual short-term memory (VSTM) using a one-shot change detection task. Building on previous work using the simultaneous streams change detection task, we confirmed that 8- and 10-month-old infants are sensitive to changes in binding between identity and location in VSTM. Further, we demonstrated that infants recognize specifically what changed in these events. Thus, infants' VSTM for binding is robust and can be observed in different procedures and with different stimuli
    corecore