460 research outputs found

    Passive spiral formation from halo gas starvation: Gradual transformation into S0s

    Full text link
    Recent spectroscopic and high resolution HSTHST-imaging observations have revealed significant numbers of ``passive'' spiral galaxies in distant clusters, with all the morphological hallmarks of a spiral galaxy (in particular, spiral arm structure), but with weak or absent star formation. Exactly how such spiral galaxies formed and whether they are the progenitors of present-day S0 galaxies is unclear. Based on analytic arguments and numerical simulations of the hydrodynamical evolution of a spiral galaxy's halo gas (which is a likely candidate for the source of gas replenishment for star formation in spirals), we show that the origin of passive spirals may well be associated with halo gas stripping. Such stripping results mainly from the hydrodynamical interaction between the halo gas and the hot intracluster gas. Our numerical simulations demonstrate that even if a spiral orbits a cluster with a pericenter distance ∼\sim 3 times larger than the cluster core radius, ∼\sim 80 % of the halo gas is stripped within a few Gyr and, accordingly, cannot be accreted by the spiral. Furthermore, our study demonstrates that this dramatic decline in the gaseous infall rate leads to a steady increase in the QQ parameter for the disk, with the spiral arm structure, although persisting, becoming less pronounced as the star formation rate gradually decreases. These results suggest that passive spirals formed in this way, gradually evolve into red cluster S0s.Comment: 13 pages 4 figures (fig.1 = jpg format), accepted by Ap

    Observations of Stripped Edge-on Virgo Cluster Galaxies

    Full text link
    We present observations of highly inclined, HI deficient, Virgo cluster spiral galaxies. Our high-resolution VLA HI observations of edge-on galaxies allow us to distinguish extraplanar gas from disk gas. All of our galaxies have truncated H-alpha disks, with little or no disk gas beyond a truncation radius. While all the gas disks are truncated, the observations show evidence for a continuum of stripping states: symmetric, undisturbed truncated gas disks indicate galaxies that were stripped long ago, while more asymmetric disks suggest ongoing or more recent stripping. We compare these timescale estimates with results obtained from two-dimensional stellar spectroscopy of the outer disks of galaxies in our sample. One of the galaxies in our sample, NGC 4522 is a clear example of active ram-pressure stripping, with 40% of its detected HI being extraplanar. As expected, the outer disk stellar populations of this galaxy show clear signs of recent (and, in fact, ongoing) stripping. Somewhat less expected, however, is the fact that the spectrum of the outer disk of this galaxy, with very strong Balmer absorption and no observable emission, would be classified as ``k+a'' if observed at higher redshift. Our observations of NGC 4522 and other galaxies at a range of cluster radii allow us to better understand the role that clusters play in the structure and evolution of disk galaxies.Comment: 4 pages, 2 figures, to appear in the proceedings of the Island Universes conference held in Terschelling, Netherlands, July 2005, ed. R. de Jong, version with high resolution figures can be downloaded from ftp://ftp.astro.yale.edu/pub/hugh/papers/iu_crowl_h.ps.g

    Evolution of the Fraction of Clumpy Galaxies at 0.2<z<1.0 in the COSMOS field

    Get PDF
    Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2<z<1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with Mstar > 10^9.5 Msun decreases with time from ~0.35 at 0.8<z<1.0 to ~0.05 at 0.2<z<0.4 irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with Mstar > 10^10.5 Msun at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z~0.9 to z~0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological K-correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.Comment: 14 Pages, 13 Figures, 1 Table, Accepted for publication in Ap

    Photometric evolution of dusty starburst mergers:On the nature of ultra-luminous infrared galaxies

    Get PDF
    By performing N-body simulations of chemodynamical evolution of galaxies with dusty starbursts, we investigate photometric evolution of gas-rich major mergers in order to explore the nature of ultraluminous infrared galaxies (ULIRGs) with the total infrared luminosity (LIRL_{\rm IR} for 8∼10008\sim 1000 μ\mum) of ∼\sim 101210^{12} L⊙L_{\odot}. Main results are the following three. (1) Global colors and absolute magnitudes the during dusty starburst of a major merger do not change with time significantly, because interstellar dust heavily obscures young starburst populations that could cause rapid evolution of photometric properties of the merger. (2) Dust extinction of stellar populations in a galaxy merger with large infrared luminosity (LIRL_{\rm IR} >> 101110^{11} L⊙L_{\odot}) is selective in the sense that younger stellar populations are preferentially obscured by dust than old ones. This is because younger populations are located in the central region where a larger amount of dusty interstellar gas can be transferred from the outer gas-rich regions of the merger. (3) Both LIRL_{\rm IR} and the ratio of LIRL_{\rm IR} to BB band luminosity (LB(L_{\rm B}) increases as the star formation rate increase during the starburst of the present merger model, resulting in the positive correlation between LIRL_{\rm IR} and LIR/LBL_{\rm IR}/L_{\rm B}.Comment: 32 pages 25 figures,2001,ApJ,in press. For all 25 PS figures (including fig25.ps), see http://newt.phys.unsw.edu.au/~bekki/res.dir/paper.dir/apj06.dir/fig.tar.g

    On the Hidden Nuclear Starburst in Arp 220

    Get PDF
    We construct a starburst model for the hidden starbursts in Arp 220 based on the new Starburst99 models of Leitherer et al. Comparing these stellar population synthesis models with observations, we show that the hidden power source must be due to star formation (as opposed to an AGN) at the 50% level or more in order to avoid an ionizing photon excess problem, and this starburst must be young (<7×107< 7 \times 10^7 yr). We derive a current star formation rate of 270M⊙270 M_{\odot} yr−1^{-1}, and an extinction AV>30A_V > 30 mag for our line of sight to this hidden starburst.Comment: 4 pages, 1 figure, Accepted for publication in ApJ

    The Discovery of a Very Narrow-Line Star Forming Obat a Redshift of 5.66ject

    Full text link
    We report on the discovery of a very narrow-line star forming object beyond redshift of 5. Using the prime-focus camera, Suprime-Cam, on the 8.2 m Subaru telescope together with a narrow-passband filter centered at λc\lambda_{\rm c} = 8150 \AA with passband of Δλ\Delta\lambda = 120 \AA, we have obtained a very deep image of the field surrounding the quasar SDSSp J104433.04−-012502.2 at a redshift of 5.74. Comparing this image with optical broad-band images, we have found an object with a very strong emission line. Our follow-up optical spectroscopy has revealed that this source is at a redshift of z=5.655±0.002z=5.655\pm0.002, forming stars at a rate ∼13 h0.7−2 M⊙\sim 13 ~ h_{0.7}^{-2} ~ M_\odot yr−1^{-1}. Remarkably, the velocity dispersion of Lyα\alpha-emitting gas is only 22 km s−1^{-1}. Since a blue half of the Lyα\alpha emission could be absorbed by neutral hydrogen gas, perhaps in the system, a modest estimate of the velocity dispersion may be ≳\gtrsim 44 km s−1^{-1}. Together with a linear size of 7.7 h0.7−1h_{0.7}^{-1} kpc, we estimate a lower limit of the dynamical mass of this object to be ∼2×109M⊙\sim 2 \times 10^9 M_\odot. It is thus suggested that LAE J1044−-0123 is a star-forming dwarf galaxy (i.e., a subgalactic object or a building block) beyond redshift 5 although we cannot exclude a possibility that most Lyα\alpha emission is absorbed by the red damping wing of neutral intergalactic matter.Comment: 6 pages, 2 figures. ApJ Letters, in pres
    • …
    corecore