36 research outputs found

    Total Synthesis of Zephycarinatines via Photocatalytic Reductive Radical ipso‐Cyclization

    Get PDF
    We report herein a nonbiomimetic strategy for the total synthesis of the plicamine‐type alkaloids zephycarinatines C and D. The key feature of the synthesis is a stereoselective reductive radical ipso‐cyclization using visible‐light‐mediated photoredox catalysis. This cyclization enabled the construction of a 6, 6‐spirocyclic core structure through the addition of a carbon‐centered radical onto the aromatic ring. Biological evaluation of zephycarinatines and their derivatives revealed that the synthetic derivative with a keto group displays moderate inhibitory activity against LPS‐induced NO production. This approach could offer future opportunities to expand the chemical diversity of plicamine‐type alkaloids as well as providing useful intermediates for their syntheses

    Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study

    Get PDF
    Pineoblastomas (PBs) are rare, aggressive pediatric brain tumors of the pineal gland with modest overall survival despite intensive therapy. We sought to define the clinical and molecular spectra of PB to inform new treatment approaches for this orphan cancer. Tumor, blood, and clinical data from 91 patients with PB or supratentorial primitive neuroectodermal tumor (sPNETs/CNS-PNETs), and 2 pineal parenchymal tumors of intermediate differentiation (PPTIDs) were collected from 29 centres in the Rare Brain Tumor Consortium. We used global DNA methylation profiling to define a core group of PB from 72/93 cases, which were delineated into five molecular sub-groups. Copy number, whole exome and targeted sequencing, and miRNA expression analyses were used to evaluate the clinico-pathologic significance of each sub-group. Tumors designated as group 1 and 2 almost exclusively exhibited deleterious homozygous loss-of-function alterations in miRNA biogenesis genes (DICER1, DROSHA, and DGCR8) in 62 and 100% of group 1 and 2 tumors, respectively. Recurrent alterations of the oncogenic MYC-miR-17/92-RB1 pathway were observed in the RB and MYC sub-group, respectively, characterized by RB1 loss with gain of miR-17/92, and recurrent gain or amplification of MYC. PB sub-groups exhibited distinct clinical features: group 1–3 arose in older children (median ages 5.2–14.0 years) and had intermediate to excellent survival (5-year OS of 68.0–100%), while Group RB and MYC PB patients were much younger (median age 1.3–1.4 years) with dismal survival (5-year OS 37.5% and 28.6%, respectively). We identified age

    Cardiac Arrest during Gamete Release in Chum Salmon Regulated by the Parasympathetic Nerve System

    Get PDF
    Cardiac arrest caused by startling stimuli, such as visual and vibration stimuli, has been reported in some animals and could be considered as an extraordinary case of bradycardia and defined as reversible missed heart beats. Variability of the heart rate is established as a balance between an autonomic system, namely cholinergic vagus inhibition, and excitatory adrenergic stimulation of neural and hormonal action in teleost. However, the cardiac arrest and its regulating nervous mechanism remain poorly understood. We show, by using electrocardiogram (ECG) data loggers, that cardiac arrest occurs in chum salmon (Oncorhynchus keta) at the moment of gamete release for 7.39±1.61 s in females and for 5.20±0.97 s in males. The increase in heart rate during spawning behavior relative to the background rate during the resting period suggests that cardiac arrest is a characteristic physiological phenomenon of the extraordinarily high heart rate during spawning behavior. The ECG morphological analysis showed a peaked and tall T-wave adjacent to the cardiac arrest, indicating an increase in potassium permeability in cardiac muscle cells, which would function to retard the cardiac action potential. Pharmacological studies showed that the cardiac arrest was abolished by injection of atropine, a muscarinic receptor antagonist, revealing that the cardiac arrest is a reflex response of the parasympathetic nerve system, although injection of sotalol, a β-adrenergic antagonist, did not affect the cardiac arrest. We conclude that cardiac arrest during gamete release in spawning release in spawning chum salmon is a physiological reflex response controlled by the parasympathetic nervous system. This cardiac arrest represents a response to the gaping behavior that occurs at the moment of gamete release

    Establishment of a set of inbred strains of the pine wood nematode, Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae), and evidence of their varying levels of virulence

    No full text
    Pine wilt disease (PWD) caused by the pine wood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle, has become a worldwide problem. The pathogenic mechanism of PWD continues to remain controversial, which in part may be attributed to the lack of universal materials of B. xylophilus with a high genetic purity. The intrinsic high genetic diversity in B. xylophilus isolates/populations must be a fatal obstacle for performing forward genetics and other molecular approaches to controlling them. We conducted a series of successive full-sib mating of conventional isolates of B. xylophilus to establish a set of inbred strains. Using DNA markers, we also determined their genetic diversity and biological characteristics, such as virulence and reproductive ability. Consequently, the newly established strains yielded a higher genetic purity than the conventional isolates and showed varying virulence despite sharing a common ancestor. The significance of this study lies not only in establishing a set of inbred strains of B. xylophilus with the certification of their purity but also in demonstrating that avirulent strain(s) with a genotype similar to the virulent strains can be obtained by simple successive full-sib mating. This technique is one of the most powerful tools for elucidating the pathogenic mechanism(s) of PWD

    Total Synthesis of Zephycarinatines via Photocatalytic Reductive Radical ipso

    No full text
    We report herein a nonbiomimetic strategy for the total synthesis of the plicamine‐type alkaloids zephycarinatines C and D. The key feature of the synthesis is a stereoselective reductive radical ipso‐cyclization using visible‐light‐mediated photoredox catalysis. This cyclization enabled the construction of a 6, 6‐spirocyclic core structure through the addition of a carbon‐centered radical onto the aromatic ring. Biological evaluation of zephycarinatines and their derivatives revealed that the synthetic derivative with a keto group displays moderate inhibitory activity against LPS‐induced NO production. This approach could offer future opportunities to expand the chemical diversity of plicamine‐type alkaloids as well as providing useful intermediates for their syntheses
    corecore