87 research outputs found

    Accelerating the laser-induced demagnetization of a ferromagnetic film by antiferromagnetic order in an adjacent layer

    Get PDF
    We study the ultrafast demagnetization of Ni/NiMn and Co/NiMn ferromagnetic/antiferromagnetic bilayer systems after excitation by a laser pulse. We probe the ferromagnetic order of Ni and Co using magnetic circular dichroism in time-resolved pump-probe resonant x-ray reflectivity. Tuning the sample temperature across the antiferromagnetic ordering temperature of the NiMn layer allows us to investigate effects induced by the magnetic order of the latter. The presence of antiferromagnetic order in NiMn speeds up the demagnetization of the ferromagnetic layer, which is attributed to bidirectional laser-induced superdiffusive spin currents between the ferromagnetic and the antiferromagnetic layer

    Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model

    Full text link
    In this work we investigate the electronic transport along model DNA molecules using an effective tight-binding approach that includes the backbone on site energies. The localization length and participation number are examined as a function of system size, energy dependence, and the contact coupling between the leads and the DNA molecule. On one hand, the transition from an diffusive regime to a localized regime for short systems is identified, suggesting the necessity of a further length scale revealing the system borders sensibility. On the other hand, we show that the lenght localization and participation number, do not depended of system size and contact coupling in the thermodynamic limit. Finally we discuss possible length dependent origins for the large discrepancies among experimental results for the electronic transport in DNA sample

    Temperature and force dependence of nanoscale electron transport via the Cu protein Azurin

    Full text link
    The mechanisms of solid-state electron transport (ETp) via a monolayer of immobilized Azurin (Az) was examined by conducting probe atomic force microscopy (CP-AFM), both as function of temperature (248 - 373K) and of applied tip force (6-12 nN). By varying both temperature and force in CP-AFM, we find that the ETp mechanism can alter with a change in the force applied via the tip to the proteins. As the applied force increases, ETp via Az changes from temperature-independent to thermally activated at high temperatures. This is in contrast to the Cu-depleted form of Az (apo-Az), where increasing the applied force causes only small quantitative effects, that fit with a decrease in electrode spacing. At low force ETp via holo-Az is temperature-independent and thermally activated via apo-Az. This observation agrees with macroscopic-scale measurements, thus confirming that the difference in ETp dependence on temperature between holo- and apo-Az is an inherent one that may reflect a difference in rigidity between the two forms. An important implication of these results, which depend on CP-AFM measurements over a significant temperature range, is that for ETp measurements on floppy systems, such as proteins, the stress applied to the sample should be kept constant or, at least controlled during measurement.Comment: 24 pages, 6 figures, plus Supporting Information with 4 pages and 2 figure

    Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families.

    Get PDF
    Discovery of most autosomal recessive disease-associated genes has involved analysis of large, often consanguineous multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of new dominant causes of rare, genetically heterogeneous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios. Here we analyzed 4,125 families with diverse, rare and genetically heterogeneous developmental disorders and identified four new autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (selecting probands with rare, biallelic and putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population and (ii) the phenotypic similarity of patients with recessive variants in the same candidate gene. This new paradigm promises to catalyze the discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations and those caused predominantly by compound heterozygous genotypes

    Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining

    Get PDF

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link
    • …
    corecore