147 research outputs found
Heat transfer in natural convection with finite-sized particles considering thermal conductance due to interparticle contacts
This is a pre-copyedited, author-produced PDF of an article accepted for publication in Computational Thermal Sciences following peer review
A case report of acute cardiac tamponade creation in a macaque
Although acute cardiac tamponade is one of the major problems in clinical practice, a suitable animal model is still lacking. We tried to create acute cardiac tamponade in macaques by echo-guided catheter manipulation. A 13-year-old male macaque was anesthetized, and a long sheath was inserted into the left ventricle via the left carotid artery under the guidance of transthoracic echocardiography. The sheath was then inserted into the orifice of the left coronary artery to perforate the proximal site of the left anterior descending branch. A cardiac tamponade was successfully created. Injection of diluted contrast agent into the pericardial space via a catheter made it possible to clearly distinguish between the hemopericardium and the surrounding tissues on postmortem computed tomography. This procedure did not need an X-ray imaging system during catheterization. Our present model would help us examine the intrathoracic organs in the presence of acute cardiac tamponade
The role of a group III AQP, AQP11 in intracellular organelle homeostasis
AQP11 is a member of a new aquaporin subfamily which includes many aquaporin homologs with low amino acid identities, around 20% of previously identified AQPs. Although these AQPs have unusual NPA sequences, these AQPs have a completely conserved and functionally indispensable cysteine residue downstream of the second NPA box, suggesting that they belong to a specific AQP subfamily, which we propose to name the group III AQPs. On the other hand, the NPA boxes are highly conserved in previous AQP subfamilies : the group I AQPs, original water-selective aquaporin family and the group II AQPs, aquaglyceroporin family. Currently the roles of the group III AQPs are only known with AQP11 as the disruption of intracellularly located AQP11 in mice produced huge vacuoles in the proximal tubule leading to fatal polycystic kidneys at one month old. This review focused on the classification of AQPs based on primary structures to obtain insights into the function and the role of AQPs. With the accumulation of new AQP-like sequences through genome projects, this classification will be useful to predict their functions as each group may have specific characteristics in its function, distribution and regulation
Solar System Exploration Sciences by EQUULEUS on SLS EM-1 and Science Instruments Development Status
EQUULEUS is a spacecraft to explore the cislunar region including the Earth-Moon Lagrange point L2 (EML2) and will be launched by NASA’s SLS EM-1 rocket. Although the size of EQUULEUS is only 6U, the spacecraft carries three different science instruments. By using these instruments, the spacecraft will demonstrate three missions for solar system exploration science during and after the flight to EML2; imaging of the plasmasphere around the earth, observation of space dust flux in the cislunar region, and observation of lunar impact flashes at the far side of the moon. The developments and verifications of the flight models of these science instruments were completed by the end of 2018, and we started flight model integration and testing. This paper introduces the details of the scientific objectives, design results and development statuses of the instruments. In addition, results of the integration and pre-flight tests are also described
Seismicity controlled by resistivity structure : the 2016 Kumamoto earthquakes, Kyushu Island, Japan
The M JMA 7.3 Kumamoto earthquake that occurred at 1:25 JST on April 16, 2016, not only triggered aftershocks in the vicinity of the epicenter, but also triggered earthquakes that were 50–100 km away from the epicenter of the main shock. The active seismicity can be divided into three regions: (1) the vicinity of the main faults, (2) the northern region of Aso volcano (50 km northeast of the mainshock epicenter), and (3) the regions around three volcanoes, Yufu, Tsurumi, and Garan (100 km northeast of the mainshock epicenter). Notably, the zones between these regions are distinctively seismically inactive. The electric resistivity structure estimated from one-dimensional analysis of the 247 broadband (0.005–3000 s) magnetotelluric and telluric observation sites clearly shows that the earthquakes occurred in resistive regions adjacent to conductive zones or resistive-conductive transition zones. In contrast, seismicity is quite low in electrically conductive zones, which are interpreted as regions of connected fluids. We suggest that the series of the earthquakes was induced by a local accumulated stress and/or fluid supply from conductive zones. Because the relationship between the earthquakes and the resistivity structure is consistent with previous studies, seismic hazard assessment generally can be improved by taking into account the resistivity structure. Following on from the 2016 Kumamoto earthquake series, we suggest that there are two zones that have a relatively high potential of earthquake generation along the western extension of the MTL
- …