153 research outputs found

    Reheating of the Universe as holographic thermalization

    Get PDF
    Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model gives significantly lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.Comment: 5 pages, 1 figur

    Improvement of energy-momentum tensor and non-Gaussianities in holographic cosmology

    Get PDF
    In holographic models of cosmology based on the (A)dS/CFT correspondence, conformal symmetry is implicit in the dual description of the Universe. Generically, however, one cannot expect the (broken) conformal invariance in the cosmic fluctuations as only the scale invariance is manifest in experiments. Also, in order for the prediction of the holographic models to make sense, the conformal symmetry needs to be broken as the scalar mode of the metric fluctuations becomes pure gauge in the conformal limit. We discuss the improvement ambiguity of the energy-momentum tensor in this context and construct a holographic model of the Universe that preserves the scale invariance but not necessarily the full conformal invariance. Our sample computation using a weakly coupled dual field theory shows that the orthogonal type of non-Gaussianity is present over and above the equilateral type. The improvement ambiguity corresponds to the choice of the energy momentum tensor that will couple to our particle physics sector after inflation. Our results show that the holographic prediction of the cosmological parameters crucially depends on such a choice

    Referring to Cinderella in L2 Japanese: A preliminary study

    Get PDF
    This study reports how English-speaking learners of intermediate Japanese refer to the subject noun referents previously introduced within a given discourse. Tsuchiya, Yoshimura & Nakayama (2015) and Nakayama, Yoshimura & Tsuchiya (2015) report that English-speaking L2 Japanese learners only rarely used kanojo 'she' during their telling of the story of The Little Match Girl. Instead, we observed a frequent use of null pronouns as well as a positive correlation between language proficiency and a repetitive use of referential nouns. The use of null pronouns, but not kanojo, may come from an instructional effect as those learners were taught the null pronominal use earlier than kanojo. The current study analyzing the Cinderella story in L2 Japanese also finds a more frequent use of null pronouns than referential nouns and kanojo, which may indicate the importance of explicit instruction and more exposure to narratives in the target language

    Pulse-Driven Magnetoimpedance Sensor Detection of Cardiac Magnetic Activity

    Get PDF
    This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI) sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT) level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology

    Reconstruction of Insulin Signal Flow from Phosphoproteome and Metabolome Data

    Get PDF
    SummaryCellular homeostasis is regulated by signals through multiple molecular networks that include protein phosphorylation and metabolites. However, where and when the signal flows through a network and regulates homeostasis has not been explored. We have developed a reconstruction method for the signal flow based on time-course phosphoproteome and metabolome data, using multiple databases, and have applied it to acute action of insulin, an important hormone for metabolic homeostasis. An insulin signal flows through a network, through signaling pathways that involve 13 protein kinases, 26 phosphorylated metabolic enzymes, and 35 allosteric effectors, resulting in quantitative changes in 44 metabolites. Analysis of the network reveals that insulin induces phosphorylation and activation of liver-type phosphofructokinase 1, thereby controlling a key reaction in glycolysis. We thus provide a versatile method of reconstruction of signal flow through the network using phosphoproteome and metabolome data
    corecore