268 research outputs found

    The WD40-repeat protein Pwp1p associates in vivo with 25S ribosomal chromatin in a histone H4 tail-dependent manner

    Get PDF
    The tails of core histones (H2A, H2B, H3 and H4) are critical for the regulation of chromatin dynamics. Each core histone tail is specifically recognized by various tail binding proteins. Here we screened for budding yeast histone H4-tail binding proteins in a protein differential display approach by two-dimensional gel electrophoresis (2DGE). To obtain highly enriched chromatin proteins, we used a Mg(2+)-dependent chromatin oligomerization technique. The Mg(2+)-dependent oligomerized chromatin from H4-tail deleted cells was compared with that from wild-type cells. We used mass spectrometry to identify 22 candidate proteins whose amounts were reduced in the oligomerized chromatin from the H4-tail deleted cells. A Saccharomyces Genome Database search revealed 10 protein complexes, each of which contained more than two candidate proteins. Interestingly, 7 out of the 10 complexes have the potential to associate with the H4-tail. We obtained in vivo evidence, by a chromatin immunoprecipitation assay, that one of the candidate proteins, Pwp1p, associates with the 25S ribosomal DNA (rDNA) chromatin in an H4-tail-dependent manner. We propose that the complex containing Pwp1p regulates the transcription of rDNA. Our results demonstrate that the protein differential display approach by 2DGE, using a histone-tail mutant, is a powerful method to identify histone-tail binding proteins

    NEDD4 controls spermatogonial stem cell homeostasis and stress response by regulating messenger ribonucleoprotein complexes

    No full text
    AbstractP bodies (PBs) and stress granules (SGs) are conserved cytoplasmic aggregates of cellular messenger ribonucleoprotein complexes (mRNPs) that are implicated in mRNA metabolism and play crucial roles in adult stem cell homeostasis and stress responses. However, the mechanisms underlying the dynamics of mRNP granules are poorly understood. Here, we report NEDD4, an E3 ubiquitin ligase, as a key regulator of mRNP dynamics that controls the size of the spermatogonial progenitor cell (SPC) pool. We find that NEDD4 targets an RNA-binding protein, NANOS2, in spermatogonia to destabilize it, leading to cell differentiation. In addition, NEDD4 is required for SG clearance. NEDD4 targets SGs and facilitates their rapid clearance through the endosomal–lysosomal pathway during the recovery period. Therefore, NEDD4 controls the turnover of mRNP components and inhibits pathological SG accumulation. Accordingly, we propose that a NEDD4-mediated mechanism regulates mRNP dynamics, and facilitates SPC homeostasis and viability under normal and stress conditions.</jats:p

    Dynamical Excimer Formation in Rigid Carbazolophane via Charge Transfer State

    Get PDF
    Formation dynamics of intramolecular excimer in dioxa[3.3](3, 6)carbazolophane (CzOCz) was studied by time-resolved spectroscopic methods and computational calculations. In the ground state, the most stable conformer in CzOCz is the anti-conformation where two carbazole rings are in antiparallel alignment. No other isomers were observed even after the solution was heated up to 150 °C, although three characteristic isomers were found by the molecular mechanics calculation: the first is the anti-conformer, the second is the syn-conformer where two carbazole rings are stacked in the same direction, and the third is the int-conformer where two carbazole rings are aligned in an edge-to-face geometry. Because of the anti-conformation, the interchromophoric interaction in CzOCz is negligible in the ground state. Nonetheless, the intramolecular excimer in CzOCz was dynamically formed in an acetonitrile (MeCN) solution, indicating strong interchromophoric interaction and the isomerization from the anti- to syn-conformation in the excited state. The excimer formation in CzOCz is more efficient in polar solvents than in less polar solvents, suggesting the contribution of the charge transfer (CT) state to the excimer formation. The stabilization in the excited state is discussed in terms of molecular orbital interaction between two carbazole rings. The solvent-polarity-induced excimer formation is discussed in terms of the CT character in the int-conformation

    Role of the RNA-Binding Protein Nrd1 in Stress Granule Formation and Its Implication in the Stress Response in Fission Yeast

    Get PDF
    We have previously identified the RNA recognition motif (RRM)-type RNA-binding protein Nrd1 as an important regulator of the posttranscriptional expression of myosin in fission yeast. Pmk1 MAPK-dependent phosphorylation negatively regulates the RNA-binding activity of Nrd1. Here, we report the role of Nrd1 in stress-induced RNA granules. Nrd1 can localize to poly(A)-binding protein (Pabp)-positive RNA granules in response to various stress stimuli, including heat shock, arsenite treatment, and oxidative stress. Interestingly, compared with the unphosphorylatable Nrd1, Nrd1DD (phosphorylation-mimic version of Nrd1) translocates more quickly from the cytoplasm to the stress granules in response to various stimuli; this suggests that the phosphorylation of Nrd1 by MAPK enhances its localization to stress-induced cytoplasmic granules. Nrd1 binds to Cpc2 (fission yeast RACK) in a phosphorylation-dependent manner and deletion of Cpc2 affects the formation of Nrd1-positive granules upon arsenite treatment. Moreover, the depletion of Nrd1 leads to a delay in Pabp-positive RNA granule formation, and overexpression of Nrd1 results in an increased size and number of Pabp-positive granules. Interestingly, Nrd1 deletion induced resistance to sustained stresses and enhanced sensitivity to transient stresses. In conclusion, our results indicate that Nrd1 plays a role in stress-induced granule formation, which affects stress resistance in fission yeast

    Phosphorylation of Kif26b Promotes Its Polyubiquitination and Subsequent Proteasomal Degradation during Kidney Development

    Get PDF
    Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development

    p54nrb/NonO and PSF promote U snRNA nuclear export by accelerating its export complex assembly.

    Get PDF
    The assembly of spliceosomal U snRNPs in metazoans requires nuclear export of U snRNA precursors. Four factors, nuclear cap-binding complex (CBC), phosphorylated adaptor for RNA export (PHAX), the export receptor CRM1 and RanGTP, gather at the m(7)G-cap-proximal region and form the U snRNA export complex. Here we show that the multifunctional RNA-binding proteins p54nrb/NonO and PSF are U snRNA export stimulatory factors. These proteins, likely as a heterodimer, accelerate the recruitment of PHAX, and subsequently CRM1 and Ran onto the RNA substrates in vitro, which mediates efficient U snRNA export in vivo. Our results reveal a new layer of regulation for U snRNA export and, hence, spliceosomal U snRNP biogenesis
    corecore