15 research outputs found

    The nucleotide and deduced amino acid sequences of porcine liver proline-β-naphthylamidase swEvidence for the identity with carboxylesterase

    Get PDF
    AbstractA cDNA clone for porcine liver proline-β-naphthylamidase was isolated and sequenced. The deduced amino acid sequence of 567 residues was highly homologous with those of carboxylesterases (EC 3.1.1.1) previously reported for other species. In addition, proline-β-naphthylamidase purified from porcine liver was shown to have strong activity towards p-nitrophenylacetate, a representative substrate for carboxylesterases. These results suggest that proline-β-naphthylamidase is identical with carboxylesterase

    ATR阻害は非相同末端結合および相同組換え修復と非依存的に5-FUを増感する

    Get PDF
    The anticancer agent 5-fluorouracil (5-FU) is cytotoxic and often used to treat various cancers. 5-FU is thought to inhibit the enzyme thymidylate synthase, which plays a role in nucleotide synthesis and has been found to induce single- and double-strand DNA breaks. ATR Ser/Thr kinase (ATR) is a principal kinase in the DNA damage response and is activated in response to UV- and chemotherapeutic drug-induced DNA replication stress, but its role in cellular responses to 5-FU is unclear. In this study, we examined the effect of ATR inhibition on 5-FU sensitivity of mammalian cells. Using immunoblotting, we found that 5-FU treatment dose-dependently induced the phosphorylation of ATR at the autophosphorylation site Thr-1989 and thereby activated its kinase. Administration of 5-FU with a specific ATR inhibitor remarkably decreased cell survival, compared with 5-FU treatment combined with other major DNA repair kinase inhibitors. Of note, the ATR inhibition enhanced induction of DNA double-strand breaks and apoptosis in 5-FU-treated cells. Using gene expression analysis, we found that 5-FU induced the activation of the intra-S cell-cycle checkpoint. Cells lacking BRCA2 were sensitive to 5-FU in the presence of ATR inhibitor. Moreover, ATR inhibition enhanced the efficacy of the 5-FU treatment, independently of the nonhomologous end-joining and homologous recombination repair pathways. These findings suggest that ATR could be a potential therapeutic target in 5-FU-based chemotherapy.博士(医学)・甲第791号・令和3年3月15日© 2020 Ito et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.This is an Open Access article under the CC BY license(https://creativecommons.org/licenses/by/4.0/)

    The neuroprotective and neurorescue effects of carbamylated erythropoietin Fc fusion protein (CEPO-Fc) in a rat model of Parkinson's disease

    Get PDF
    Parkinson's disease is characterized by progressive degeneration of dopaminergic neurons. Thus the development of therapeutic neuroprotection and neurorescue strategies to mitigate disease progression is important. In this study we evaluated the neuroprotective/rescue effects of erythropoietin Fc fusion protein (EPO-Fc) and carbamylated erythropoietin Fe fusion protein (CEPO-Fc) in a rat model of Parkinson's disease. Adult female Sprague-Dawley rats received intraperitoneal injection of EPO-Fc, CEPO-Fc or PBS. Behavioral evaluations consisted of rota-rod, cylinder and amphetamine-induced rotation tests. In the neuroprotection experiment, the CEPO-Fc group demonstrated significant improvement compared with the EPO-Fc group on the amphetamine-induced rotation test throughout the four-week follow-up period. Histologically, significantly more tyrosine hydroxylase (TH)-positive neurons were recognized in the substantia nigra (SN) pars compacta in the CEPO-Fc group than in the PBS and EPO-Fc groups. In the neurorescue experiment, rats receiving CEPO-Fc showed significantly better behavioural scores than those receiving PBS. The histological data concerning striatum also showed that the CEPO-Fc group had significantly better preservation of TH-positive fibers compared to the PBS and EPO-Fc groups. Importantly, there were no increases in hematocrit or hemoglobin levels in the CEPO-Fc group in either the neuroprotection or the neurorescue experiments. In conclusion, the newly developed CEPO-Fc might confer neuroprotective and neurorescue benefits in a rat model of Parkinson's disease without the side effects associated with polycythemia. CEPO-Fc might be a therapeutic tool for patients with Parkinson's disease
    corecore