112 research outputs found

    Physical properties of the Dome Fuji deep ice core (review)

    Get PDF
    Recent results of physical analyses of the Dome Fuji ice core are summarized with special attention to new methods introduced in the present studies. Microphysical processes which affect the ice core records are reviewed to better understand the paleoclimatic and paleoenvironmental signals stored

    Distribution of a Knockdown Resistance Mutation (L1014S) in Anopheles gambiae s.s. and Anopheles arabiensis in Western and Southern Kenya

    Get PDF
    In Kenya, insecticide-treated mosquito nets (ITNs) distributed to pregnant women and children under 5 years old through various programs have resulted in a significant reduction in malaria deaths. All of the World Health Organization-recommended insecticides for mosquito nets are pyrethroids, and vector mosquito resistance to these insecticides is one of the major obstacles to an effective malaria control program. Anopheles gambiae s.s. and Anopheles arabiensis are major malaria vectors that are widely distributed in Kenya. Two point mutations in the voltage-gated sodium channel (L1014F and L1014S) are associated with knockdown resistance (kdr) to DDT and pyrethroids in An. gambiae s.s. While the same point mutations have been reported to be rare in An. arabiensis, some evidence of metabolic resistance has been reported in this species. In order to determine the distribution of the point mutation L1014S in An. gambiae s.s. and An. arabiensis in southern and western Kenya, we collected larvae and screened for the mutation by DNA sequencing. We found high allelic and homozygous frequencies of the L1014S mutation in An. gambiae s.s. The L1014S mutation was also widely distributed in An. arabiensis, although the allelic frequency was lower than in An. gambiae s.s. The same intron sequence (length: 57 base) found in both species indicated that the mutation was introgressed by hybridization. The allelic frequency of L1014S was higher in both species in western regions, demonstrating the strong selection pressure imposed by long-lasting insecticide-treated nets (LLITN)/ITN on the An. gambiae s.s. and An. arabiensis populations in those areas. The present contribution of the L1014S mutation to pyrethroid resistance in An. arabiensis may be negligible. However, the homozygous frequency could increase with continuing selection pressure due to expanded LLITN coverage in the future

    Atractylodes lancea (Thunb.) DC. [Asteraceae] rhizome-derived exosome-like nanoparticles suppress lipopolysaccharide-induced inflammation in murine microglial cells

    Get PDF
    BackgroundExosome-like nanoparticles (ELNs) mediate interspecies intercellular communications and modulate gene expression.Hypothesis/PurposeIn this study, we isolated and purified ELNs from the dried rhizome of Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR-ELNs), a traditional natural medicine, and investigated their potential as neuroinflammatory therapeutic agents.MethodsALR-ELN samples were isolated and purified using differential centrifugation, and their physical features and microRNA contents were analyzed through transmission electron microscopy and RNA sequencing, respectively. BV-2 microglial murine cells and primary mouse microglial cells were cultured in vitro, and their ability to uptake ALR-ELNs was explored using fluorescence microscopy. The capacity of ALR-ELNs to modulate the anti-inflammatory responses of these cells to lipopolysaccharide (LPS) exposure was assessed through mRNA and protein expression analyses.ResultsOverall, BV-2 cells were found to internalize ALR-ELNs, which comprised three microRNAs (ath-miR166f, ath-miR162a-5p, and ath-miR162b-5p) that could have anti-inflammatory activity. Pretreatment of BV-2 cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide, interleukin-1β, interleukin-6, and tumor necrosis factor-α. Notably, the mRNA levels of Il1b, Il6, iNos, ccl2, and cxcl10 in BV-2 cells, which increased upon LPS exposure, were significantly reduced following ALR-ELN treatment. Moreover, the mRNA levels of heme oxygenase 1, Irf7, ccl12, and Irg1 also increased significantly following ALR-ELN treatment. In addition, pretreatment of primary mouse microglial cells with ALR-ELN prevented the pro-inflammatory effects of LPS stimulation by significantly reducing the levels of nitric oxide.ConclusionOur findings indicate that ALR-ELNs exhibit anti-inflammatory effects on murine microglial cells. Further validation may prove ALR-ELNs as a promising neuroinflammatory therapeutic agent

    The Far-Infrared Surveyor (FIS) for AKARI

    Full text link
    The Far-Infrared Surveyor (FIS) is one of two focal plane instruments on the AKARI satellite. FIS has four photometric bands at 65, 90, 140, and 160 um, and uses two kinds of array detectors. The FIS arrays and optics are designed to sweep the sky with high spatial resolution and redundancy. The actual scan width is more than eight arcmin, and the pixel pitch is matches the diffraction limit of the telescope. Derived point spread functions (PSFs) from observations of asteroids are similar to the optical model. Significant excesses, however, are clearly seen around tails of the PSFs, whose contributions are about 30% of the total power. All FIS functions are operating well in orbit, and its performance meets the laboratory characterizations, except for the two longer wavelength bands, which are not performing as well as characterized. Furthermore, the FIS has a spectroscopic capability using a Fourier transform spectrometer (FTS). Because the FTS takes advantage of the optics and detectors of the photometer, it can simultaneously make a spectral map. This paper summarizes the in-flight technical and operational performance of the FIS.Comment: 23 pages, 10 figures, and 2 tables. Accepted for publication in the AKARI special issue of the Publications of the Astronomical Society of Japa

    Multimodal pyrethroid resistance in malaria vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. in western Kenya.

    Get PDF
    Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair

    Get PDF
    UV-sensitive syndrome (UVSS) is a genodermatosis characterized by cutaneous photosensitivity without skin carcinoma1, 2, 3, 4. Despite mild clinical features, cells from individuals with UVSS, like Cockayne syndrome cells, are very UV sensitive and are deficient in transcription-coupled nucleotide-excision repair (TC-NER)2, 4, 5, which removes DNA damage in actively transcribed genes6. Three of the seven known UVSS cases carry mutations in the Cockayne syndrome genes ERCC8 or ERCC6 (also known as CSA and CSB, respectively)7, 8. The remaining four individuals with UVSS, one of whom is described for the first time here, formed a separate UVSS-A complementation group1, 9, 10; however, the responsible gene was unknown. Using exome sequencing11, we determine that mutations in the UVSSA gene (formerly known as KIAA1530) cause UVSS-A. The UVSSA protein interacts with TC-NER machinery and stabilizes the ERCC6 complex; it also facilitates ubiquitination of RNA polymerase IIo stalled at DNA damage sites. Our findings provide mechanistic insights into the processing of stalled RNA polymerase and explain the different clinical features across these TC-NER–deficient disorders

    Reconsideration of importance of the point mutation L982W in the voltage-sensitive sodium channel of the pyrethroid resistant Aedes aegypti (L.)(Diptera: Culicidae) in Vietnam.

    No full text
    Pyrethroid resistance in Aedes aegypti is widespread in southern Vietnam because the photostable 2nd generation pyrethroids have been used in large amounts over extensive areas for malaria and dengue vector control. In our previous report in 2009, F1534C, one of the point mutations in the voltage-sensitive sodium channel (VSSC) in Ae. aegypti, was widespread at high frequency in south and central area. However, no significant correlation between the frequency of F1534C and pyrethroid susceptibility was detected primarily because the F1534C mutation frequency in the southern highland area was very low, despite that the bioassay indicated high pyrethroid resistance. The point mutation in the VSSC, L982W, which was not the target mutation in our previous study, was recently determined to be an important mutation causing high-pyrethroid resistance in Vietnamese Ae. aegypti. In the present study, a re-investigation of L982W in the mosquito samples collected in 2006-2008 revealed a greater distribution of this mutation (allelic percentage 59.2%) than F1534C (21.7%) and the greater proportion of homozygous L982W as compared to F1534C provided a plausible answer to the question concerning the unknown resistance factor in the southern highland area. L982W frequencies were uniformly higher in the southern part of Vietnam, including the highland area with a significantly high positive correlation with pyrethroid resistance in Ae. aegypti

    Dynamical behavior of the ice sheet in Mizuho Plateau, East Antarctica

    Get PDF
    The Japanese Antarctic Research Expedition (JARE) has continued glaciological work in Mizuho Plateau, East Antarctica. We have already reported that the ice sheet on Mizuho Plateau which flows into Shirase Glacier, classified as a fast-moving outlet glacier, was thinning at a rate of about 70cm・a^ and the profile of basal shear stress along the central flow line derived from topographic map was similar to that of surging glaciers. A new 5-year glaciological program in Mizuho Plateau and East Queen Maud Land which started in 1981 is now being carried out. We have obtained new results as follows : (1) The ice sheet in the downstream region where ice elevation is lower than about 2800m is thinning, based upon data on horizontal and vertical flow velocity, strain rate, inclination of ice surface, accumulation rate and densification of snow. (2) The result of the radio-echo sounding on Mizuho Plateau suggests that the base of the ice sheet in the downstream region is wet. Based upon a two-dimensional numerical model, the calculated bottom temperature shows that the ice temperature at the base of the ice sheet in the glacier downstream is at the pressure melting point and the ice base is also wet. These results supports the result described in (1), since basal sliding due to the wet base causes the ice sheet thinning as proposed by our previous studies. Summarizing these results, a possible explanation of ice sheet variation on Mizuho Plateau is as follows : the thinning of the ice sheet caused by the basal sliding due to melting of the ice base started at the mouth of the Shirase Glacier and has been expanding upstream to reach the present state. A simple calculation, using flow velocities, shows that the thinning started at Shirase Glacier about a few thousand years ago
    corecore