225 research outputs found

    Extremely Large Magnetoresistance in the Nonmagnetic Metal PdCoO2

    Get PDF
    Extremely large magnetoresistance is realized in the nonmagnetic layered metal PdCoO2. In spite of a highly conducting metallic behavior with a simple quasi-two-dimensional hexagonal Fermi surface, the interlayer resistance reaches up to 35000% for the field along the [1-10] direction. Furthermore, the temperature dependence of the resistance becomes nonmetallic for this field direction, while it remains metallic for fields along the [110] direction. Such severe and anisotropic destruction of the interlayer coherence by a magnetic field on a simple Fermi surface is ascribable to orbital motion of carriers on the Fermi surface driven by the Lorentz force, but seems to have been largely overlooked until now.Comment: Phys. Rev. Lett. 111, 056601 (2013

    1α,25-Dihydroxyvitamin D3 enhances cerebral clearance of human amyloid-β peptide(1-40) from mouse brain across the blood-brain barrier

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebrovascular dysfunction has been considered to cause impairment of cerebral amyloid-β peptide (Aβ) clearance across the blood-brain barrier (BBB). Further, low levels of vitamin D are associated with increased risk of Alzheimer's disease, as well as vascular dysfunction. The purpose of the present study was to investigate the effect of 1α,25-dihydroxyvitamin D<sub>3 </sub>(1,25(OH)<sub>2</sub>D3), an active form of vitamin D, on cerebral Aβ clearance from mouse brain.</p> <p>Methods</p> <p>The elimination of [<sup>125</sup>I]hAβ(1-40) from mouse brain was examined by using the Brain Efflux Index method to determine the remaining amount of [<sup>125</sup>I]hAβ(1-40) radioactivity after injection into the cerebral cortex. [<sup>125</sup>I]hAβ(1-40) internalization was analyzed using conditionally immortalized mouse brain capillary endothelial cells (TM-BBB4).</p> <p>Results</p> <p>Twenty-four hours after intraperitoneal injection of 1,25(OH)<sub>2</sub>D3 (1 μg/mouse), [<sup>125</sup>I]hAβ(1-40) elimination from mouse brain was increased 1.3-fold, and the level of endogenous Aβ(1-40) in mouse brain was reduced. These effects were observed at 24 h after i.p. injection of 1,25(OH)<sub>2</sub>D3, while no significant effect was observed at 48 or 72 h. Vitamin D receptor (VDR) mRNA was detected in mouse brain capillaries, suggesting that 1,25(OH)<sub>2</sub>D3 has a VDR-mediated genomic action. Furthermore, forskolin, which activates mitogen-activated protein kinase kinase (MEK), enhanced [<sup>125</sup>I]hAβ(1-40) elimination from mouse brain. Forskolin also enhanced [<sup>125</sup>I]hAβ(1-40) internalization in TM-BBB4 cells, and this enhancement was inhibited by a MEK inhibitor, suggesting involvement of non-genomic action.</p> <p>Conclusions</p> <p>The active form of vitamin D, 1,25(OH)<sub>2</sub>D3, appears to enhance brain-to-blood Aβ(1-40) efflux transport at the BBB through both genomic and non-genomic actions. Compounds activating these pathways may be candidate agents for modulating Aβ(1-40) elimination at the BBB.</p

    A Neurorobotics Simulation of Autistic Behavior Induced by Unusual Sensory Precision

    Get PDF
    Recently, applying computational models developed in cognitive science to psychiatric disorders has been recognized as an essential approach for understanding cognitive mechanisms underlying psychiatric symptoms. Autism spectrum disorder is a neurodevelopmental disorder that is hypothesized to affect information processes in the brain involving the estimation of sensory precision (uncertainty), but the mechanism by which observed symptoms are generated from such abnormalities has not been thoroughly investigated. Using a humanoid robot controlled by a neural network using a precision-weighted prediction error minimization mechanism, it is suggested that both increased and decreased sensory precision could induce the behavioral rigidity characterized by resistance to change that is characteristic of autistic behavior. Specifically, decreased sensory precision caused any error signals to be disregarded, leading to invariability of the robot’s intention, while increased sensory precision caused an excessive response to error signals, leading to fluctuations and subsequent fixation of intention. The results may provide a system-level explanation of mechanisms underlying different types of behavioral rigidity in autism spectrum and other psychiatric disorders. In addition, our findings suggest that symptoms caused by decreased and increased sensory precision could be distinguishable by examining the internal experience of patients and neural activity coding prediction error signals in the biological brain

    Tool-Use Model to Reproduce the Goal Situations Considering Relationship Among Tools, Objects, Actions and Effects Using Multimodal Deep Neural Networks

    Get PDF
    We propose a tool-use model that enables a robot to act toward a provided goal. It is important to consider features of the four factors; tools, objects actions, and effects at the same time because they are related to each other and one factor can influence the others. The tool-use model is constructed with deep neural networks (DNNs) using multimodal sensorimotor data; image, force, and joint angle information. To allow the robot to learn tool-use, we collect training data by controlling the robot to perform various object operations using several tools with multiple actions that leads different effects. Then the tool-use model is thereby trained and learns sensorimotor coordination and acquires relationships among tools, objects, actions and effects in its latent space. We can give the robot a task goal by providing an image showing the target placement and orientation of the object. Using the goal image with the tool-use model, the robot detects the features of tools and objects, and determines how to act to reproduce the target effects automatically. Then the robot generates actions adjusting to the real time situations even though the tools and objects are unknown and more complicated than trained ones

    Anomalous In-Plane Anisotropy of the Onset of Superconductivity in (TMTSF)2ClO4

    Get PDF
    We report the magnetic field-amplitude and field-angle dependence of the superconducting onset temperature Tc_onset of the organic superconductor (TMTSF)2ClO4 in magnetic fields H accurately aligned to the conductive ab' plane. We revealed that the rapid increase of the onset fields at low temperatures occurs both for H // b' and H // a, irrespective of the carrier confinement. Moreover, in the vicinity of the Pauli limiting field, we report a shift of a principal axis of the in-plane field-angle dependence of Tc_onset away from the b' axis. This feature may be related to an occurrence of Fulde-Ferrell-Larkin-Ovchinnikov phases.Comment: 4 pages, 4 figure

    Acquisition of Viewpoint Transformation and Action Mappings via Sequence to Sequence Imitative Learning by Deep Neural Networks

    Get PDF
    We propose an imitative learning model that allows a robot to acquire positional relations between the demonstrator and the robot, and to transform observed actions into robotic actions. Providing robots with imitative capabilities allows us to teach novel actions to them without resorting to trial-and-error approaches. Existing methods for imitative robotic learning require mathematical formulations or conversion modules to translate positional relations between demonstrators and robots. The proposed model uses two neural networks, a convolutional autoencoder (CAE) and a multiple timescale recurrent neural network (MTRNN). The CAE is trained to extract visual features from raw images captured by a camera. The MTRNN is trained to integrate sensory-motor information and to predict next states. We implement this model on a robot and conducted sequence to sequence learning that allows the robot to transform demonstrator actions into robot actions. Through training of the proposed model, representations of actions, manipulated objects, and positional relations are formed in the hierarchical structure of the MTRNN. After training, we confirm capability for generating unlearned imitative patterns
    corecore