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We propose an imitative learning model that allows a robot to acquire positional relations

between the demonstrator and the robot, and to transform observed actions into robotic

actions. Providing robots with imitative capabilities allows us to teach novel actions

to them without resorting to trial-and-error approaches. Existing methods for imitative

robotic learning require mathematical formulations or conversion modules to translate

positional relations between demonstrators and robots. The proposed model uses two

neural networks, a convolutional autoencoder (CAE) and a multiple timescale recurrent

neural network (MTRNN). The CAE is trained to extract visual features from raw images

captured by a camera. The MTRNN is trained to integrate sensory-motor information and

to predict next states. We implement this model on a robot and conducted sequence

to sequence learning that allows the robot to transform demonstrator actions into robot

actions. Through training of the proposedmodel, representations of actions, manipulated

objects, and positional relations are formed in the hierarchical structure of the MTRNN.

After training, we confirm capability for generating unlearned imitative patterns.

Keywords: imitative learning, human-robot interaction, recurrent neural networks, deep neural networks,

sequence to sequence learning

1. INTRODUCTION

Today there is increased interest in robots capable of working in human living environments. Robot
motions are generally preprogrammed by engineers, but it is crucial for robots to learn new actions
in work environment contexts if they are to work with humans. One way for robots to learn new
actions is imitation, which is the behavioral capability to generate the equivalent actions after the
observation of the demonstrator’s actions. Imitation is a powerful learning method that humans
apply to acquire new actions without resorting to trial-and-error attempts. Hence, robot acquisition
of imitative abilities will realize programming by demonstration (PbD) (Billard et al., 2008), in which
new action skills are acquired from demonstrators without any prior design.

Early studies of imitation learning are related to computational neuroscience, focusing on task-
level imitation such as assembly (Kuniyoshi et al., 1994), kendama manipulation (Miyamoto et al.,
1996), and tennis serves (Miyamoto and Kawato, 1998). To date, the main approaches to imitative
learning have been probabilistic models, reinforcement learning, and neural networks. Among
probabilistic models, hidden Markov models realize behavior recognition, generation through
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imitative learning (Inamura et al., 2004), and imitation of object
manipulation (Sugiura et al., 2010). Gaussian mixture models
allow robots to imitate human gestures (Calinon et al., 2010).
Reinforcement learning has been used for robot acquisition
of motor primitives (Kober and Peters, 2010) and applied to
task-level learning (Schaal, 1997). By combining reinforcement
learning with a Gaussian mixture model, Guenter et al.
(2007) achieved robot imitation of reaching movements. Neural
network approaches mainly use recurrent neural networks that
allow robots to imitate human gesture patterns (Ito and Tani,
2004) and object manipulations (Ogata et al., 2009; Arie et al.,
2012).

As another perspective, cognitive developmental robotics
(Asada et al., 2009; Cangelosi et al., 2010) has tried to understand
the development of the human cognitive abilities through
robot experiments based on constructive approaches. In studies
focusing on imitative learning, robots were trained to learn
imitative tasks by Hebbian learning (Nagai et al., 2011; Kawai
et al., 2012) and neural networks (Ogata et al., 2009; Arie et al.,
2012; Nakajo et al., 2015). Through training, experimenters
observe behavior changes in robots and in the internal states of
the learning models, then consider the developmental processes
of imitation. The Hebbian learning approach reveals changes
in granularity on visual development, allowing the robot to
recognize self–other correspondences (Nagai et al., 2011; Kawai
et al., 2012). Our previous studies used recurrent neural networks
to demonstrate how robots can translate from other to own
actions (Ogata et al., 2009), imitative ability for the composition
of behaviors (Arie et al., 2012), and recognition of positional
relations between self and other (Nakajo et al., 2015).

For robots working in human living environments, imitation
of demonstrator behaviors roughly comprises two processes:
(1) observing the behavior and (2) transforming the observed
behavior into an action. During observations, robots are
expected to extract information about the imitated behavior.
In the transformation process, robots must extract necessary
information from the observations, and match them with
their own actions. Robots cannot always observe behaviors
from the same position, but are expected to recognize and
reproduce behaviors regardless of the position from which they
were observed. However, few previous studies have focused
on positional relations between robots and demonstrators or
considered correspondences between actions provided from
various positions.

If robots are to observe demonstrated actions and transform
them into the robots’ own actions, robots must process
raw images and extract from them information necessary
for imitation. However, the huge dimensionality of raw data
makes direct processing too difficult. Deep-learning techniques
are looked to as a solution to this problem (LeCun et al.,
2015), because deep learning can process raw data and
allows machines to automatically extract necessary information
about requested tasks. For instance, deep learning techniques
have outperformed previous methods for image recognition
(Krizhevsky et al., 2012). Over the past several years, deep
learning has been applied to action learning by robots, and
many studies have investigated imitative learning through

deep learning (Liu et al., 2017; Sermanet et al., 2017; Stadie
et al., 2017). Stadie et al. applied deep learning methods
to transformation of demonstrator views into robot control
features. Sermanet et al. and Liu et al. trained learning models
to relate demonstrator views from various positions with
the robot view. After training learning models to transform
demonstrator views, reinforcement learning (Liu et al., 2017;
Stadie et al., 2017) or supervised learning methods (Sermanet
et al., 2017) are applied to allow robots to imitate behaviors.
Although these learning methods are suited to allowing
robots to acquire imitative skills regardless of positional
relations, demonstrators cannot provide their views to robots in
actual environments; robots must instead capture demonstrator
behaviors via cameras, and relate observed behaviors to their own
situation.

Various training methods have also been researched in
the field of deep learning. One common method applied to
robot action learning is end-to-end learning, in which the
learning model receives images and robot motor commands,
and directly plans the robot’s actions. Another technique
often applied to natural language translation is sequence
to sequence learning (Sutskever et al., 2014), which allows
translation of a multi-dimensional time series into another
time series. Utilizing this characteristic, Yamada et al.
(2016) allowed a robot to perform tasks based on language
instructions. This characteristic can also be applied to imitative
learning, because robots must translate observations of
demonstrator actions into their own actions. We thus consider
the application of sequence to sequence learning to imitative
learning.

The main contribution of this paper is demonstration of how
a robot can acquire the following two abilities: (1) automatic
visual-feature extraction, and (2) transformation from human
demonstration into robotic action when positional differences
are present. This paper proposes an imitative learning model
that simultaneously enables a robot to acquire positional relations
between a demonstrator and the robot, and transforms observed
actions into the robot’s own actions. In the learning process, the
robot observes demonstrator actions using a mounted camera,
and no pre-training is provided. To achieve imitative abilities,
we combined two deep neural network models. An autoencoder
extracts visual features from raw camera images, and a dynamic
neural network model called a multiple timescale recurrent
neural network (MTRNN) (Yamashita and Tani, 2008) is trained
to learn how to imitate tasks . An MTRNN learns positional
relations between a demonstrator and a robot. To allow the
robot to learn how to translate observed actions into its own
actions, the MTRNN is trained based on a sequence to sequence
approach (Sutskever et al., 2014). In experiments, we imposed
object manipulation tasks on a robot and conducted predictive
learning to train the proposed learning model. After training, we
confirmed that the robot could translate observed actions into
its own actions. By inspecting the internal states of the MTRNN,
we show how the robot recognizes positional relations between
the demonstrator and the robot during tasks. We also considered
what information the robot extracts through observation and
translates into actions.
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2. METHODS

2.1. Sequence to Sequence Learning of
Imitative Interaction
We first describe the method by which robots use our proposed
learningmodel to learn imitative interactions.We apply sequence
to sequence learning (Sutskever et al., 2014) to map observed
demonstrator actions to robot actions. sequence to sequence
learning is a learning method for RNNs that is mainly used
in the machine translation field. By inputting to RNNs series
of sentences in the original and target languages, sequence to
sequence learning allows forward propagation in the RNNs
both to recognize the meaning of the original sentence and
to generate a sentence in the target language by using the
internal states acquired through encoding the original language.
We use sequence to sequence learning to encode demonstrator
actions and to generate robot actions. As Figure 1 shows, by
concatenating demonstrator and robot actions and inputting the
concatenated sequences to a RNN, the network is expected to
learn how to map the demonstrator actions to robot actions.

2.2. Overview of Proposed Learning Model
Robot imitation of demonstrator actions requires observation
of demonstrator actions and transformation of observed actions
into robot actions. The robot must process visual information to
extract information related to demonstrator actions. Captured
camera images have too many dimensions to process directly.
The robot thus requires functions for automatically compressing
and extracting visual information. To map extracted visual
information from demonstrator actions to robot actions, visual
features and robot motor information must be integrated into
a single learning scheme. Doing so requires another learning
model for integrating this information, separate from visual
feature compression.

Our proposed learning model satisfies these conditions by
including two neural networks. The first is a deep neural network
called a convolutional autoencoder (CAE), which is applied to
extraction of visual features from camera images. The second
is a multiple timescale recurrent neural network (MTRNN),
which we use to integrate time series of extracted visual features
with robot motor information. Figure 2 shows an overview of
the proposed learning model. In the following subsections, we
explain the CAE method for extracting visual features and the
MTRNNmethod for integrating them with motor information.

2.3. Visual Feature Extraction via
Convolutional Autoencoder
An autoencoder is a neural network with bottleneck layers,
and comprises an encoder for dimensionally compressing input
images and a decoder for restoring dimensionality in output
images (Hinton and Salakhutdinov, 2006). Updating learnable
parameters in the autoencoder to identically output an input
image allows the network to acquire lower-dimensional features
representing input images at the narrowest layer. By compressing
input images, the robot can nondestructively extract visual
features of camera images.

In this study, we applied a convolutional autoencoder (CAE),
which is an autoencoder including convolution layers (Masci
et al., 2011). Convolution is an arithmetic process inspired
by the mammalian visual cortex, and is expected to extract
visual features by focusing on spatial localities in the images.
We combined a conventional CAE with fully connected layers.
Camera images are taken as input, then the CAE is trained
to minimize the mean squared error between input and
reconstructed images. The mean squared error EAE is processed
as

EAE =
1

N

N
∑

n

E
(n)
AE, (1)

FIGURE 1 | sequence to sequence learning scheme of the RNN. In the first half of the time sequence, the robot moves only its head and captures images of only the

action being demonstrated. From the captured images, the RNN is expected to recognize and encode the demonstrator actions. In the second half of the time

sequence, the RNN receives encoded internal states, plans robot actions, and issues robot motor commands.
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FIGURE 2 | The proposed learning model. (A) A convolutional autoencoder (CAE) is trained to extract visual features in images from a robot-mounted camera. (B) A

multiple timescale recurrent neural network is used to integrate CAE-extracted visual features and robot motor information.

E
(n)
AE =

1

HWC
||X̂(n) − X(n)||22, (2)

where N is the number of mini-batches; X̂(n) is the nth input
image; X(n) is the nth reconstructed image; and H, W, and
C indicate the height, width, and channel, respectively, of the
images. To avoid drastic changes in extracted visual features
between continuous time steps, we furthermore applied the
following slow penalty introduced in Finn et al. (2016):

g(ft) = η · ||(ft+2 − ft+1)− (ft+1 − ft)||
2
2 (t ≥ 1) , (3)

where ft indicates the visual features extracted from an image at
time step t, and η is a hyper-parameter to control the strength of
the penalty.

2.4. Sensory-Motor Integration by Multiple
Timescale Recurrent Neural Network
Generating imitative actions from observation of demonstrator
actions requires a function that integrates visual features

u
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wijc
(s)
t,j + bi (t ≥ 1, i ∈ IO) ,

(4)

extracted by the CAE with robot motor information. In this

work, we use a dynamic neural network model called a multiple

timescales recurrent neural network (MTRNN) (Yamashita

and Tani, 2008). An MTRNN has different time constants

in its hierarchically context layers. The layer connected to

the input–output layers [“fast context” (FC) in Figure 2B] is

a group of neurons with a smaller time constant, and so

responds more quickly to current external inputs. Another

layer connected only to neurons in the context layers [“slow
context” (SC) in Figure 2B] has a larger time constant,

and so responds more slowly. Yamashita and Tani (2008)

demonstrated that stacking layers with different timescales allows

the robot to acquire action primitives in the FC layer, and
described the order of sequential combinations of primitives in
the SC layer.

In MTRNN forward propagation, the internal state of the ith

FC, SC, and output neural unit at time step t, (ut,i), for the sth
sequence is calculated as
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where IFC, ISC, and IO are index sets of the respective neural units,
τi is the time constant of the ith neuron, wij is the connective

weight from the jth to the ith neural units, x
(s)
t,j is the external

input of the jth neural unit at time step t of the sth sequential

data, c
(s)
t,j is the activation value of the jth context neuron at time

step t of the sth sequence, and bi is the bias of the ith neural unit.
We use tanh as the activation function for the context neural unit
c
(s)
t,i and output unit y

(s)
t,i .

We trained the MTRNN by minimizing the mean squared
error with the gradient descent method. The mean squared error
ERNN is described as

ERNN =
1

S

S
∑

s

1

T(s)

T
∑

t

E
(s)
RNN,t , (5)

E
(s)
RNN,t =

1

Y
||ŷ

(s)
t − y

(s)
t ||22, (6)

where S is the number of sequential data, T(s) is the number
of time steps of the sth sequential data item, Y is the number

of neural units in the output layer, ŷ
(s)
t is the target sensory-

motor values at time step t of the sth sequence, and y
(s)
t is the

predicted sensory-motor values at time step t of the sth sequence.
The learnable parameters of the MTRNN are composed of
connected weights w, biases b, and initial internal states in

context layers u
(s)
0 . The gradients of these learnable parameters

follow a conventional back propagation through time method
(Rumelhart et al., 1986).

3. EXPERIMENT

3.1. Task Design
This section describes an experimental task given to a humanoid
robot (NAO; Aldebaran Robotics). The task in this experiment
is imitative interaction for object manipulation as shown in
Figure 3A. Imitative interaction cycles comprised four processes:
(i) the demonstrator shows the object manipulation action
to the robot, then (ii) passes the manipulated object to the
robot. Next, (iii) the robot mimics the observed manipulation,
and (iv) the demonstrator receives the object from the
robot. Furthermore, actions, manipulated objects, and positional
relationships between the robot and the demonstrator were
varied between cycles. Manipulated objects were two toys (a
chick and a watering can), shown in Figure 3B. Objects were
manipulated in two ways (move-side and move-up) as shown in
Figure 3C. The positional relationship between the robot and
the demonstrator varied according to where the demonstrator
presented the action. We define 180◦ as the position when the
robot presents a motion in front of itself. Accordingly, 120, 150,
180, 210, and 240◦ counterclockwise in the positive direction are
used as the positional relationship between the demonstrator and
the robot. Figure 3D shows a schematic diagram of positional
relations between the demonstrator and the robot . Under these
conditions, combinations that can be taken in a single cycle
come in 20 patterns, from two objects, two movements, and five
positional relations.

3.2. Training Data
This subsection describes the method for creating sequential
training data. In this experiment, the training data consisted of
time series of the robot joint angles and 120 × 160 RGB images
captured by a front-facing camera mounted in its mouth. The
CAE extracts visual features from captured images. Controlled
joints had four degrees of freedom (DoF) (ShoulderPitch,
ShoulderRoll, ElbowYaw, and ElbowRoll) at each arm and two
DoF (HeadPitch and HeadYaw) at the neck.

To prepare the training data, the robot was controlled
and actual joint angles and images were recorded. A control
method for both arms was predesigned and the arms tracked
the planned trajectories with noise. Gaussian noise was added
into the planned trajectories to augment the training data,
with the noise variance set as 0.0001. Neck joint angles
were operated by proportional–integral–derivative control, so
manipulated object centroids were centered in camera images
during interaction. While recording training data, joint angles
and camera images were sampled every 400ms. Because recorded
joint angle and camera image information had different value
ranges, the information was normalized before input to the
neural networks: joint angles were scaled to [−1.0, 1.0] according
to angle limits, and image pixel values were normalized from
[0, 255] to [−1.0, 1.0].

This experiment separately recorded the processes of imitative
interaction tasks such as demonstrator and robot actions and
object passing. After recording, processes were combined and an
imitative interaction cycle was generated. There were 160 time
steps for demonstrator and robot actions and 60 for passing
objects between the demonstrator and the robot, for a total of
440 time steps. Each sequence of 20 combinations was generated
five times, for a total of 100 instances of recorded data.

3.3. Training of CAE and MTRNN
The robot was trained with imitative interaction tasks through
predictive learning of recorded time series including joint angles
and camera images.

3.3.1. Visual Feature Learning via CAE
We first trained the CAE with camera images to extract visual
features for input to the MTRNN with robot joint angles. Input
120 × 160 RGB images have 57,600 dimensions. These input
images were trained to minimize errors between the original
inputs and reconstructed images, and to extract 10 visual features
from the middle CAE layer. Table 1 presents the detailed CAE
structure used in this learning experiment. For CAE training, we
conductedmini-batch training with an Adam optimizer (Kingma
and Ba, 2015), setting Adam hyperparameters as α = 0.01,
β1 = 0.9, and β2 = 0.99, mini-batch sizes of 200, and slow
penalty strength as η = 1.0 × 10−5. Learnable CAE parameters
were updated 7,500 times.

3.3.2. Sensory-Motor Integration Learning via MTRNN
After extracting visual features by the trained CAE, time series
of sensory-motor information were generated by concatenating
robot joint angles and extracted visual features. To allow the
robot to carry out imitative interactions, training sequences
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FIGURE 3 | Task design: (A) A single cycle of the imitative interaction task given to the robot comprises four components: (1) action presentation by the demonstrator,

(2) passing the manipulated object to the robot, (3) generating an imitative action by the robot, and (4) receiving the object by the demonstrator. (B) Objects

manipulated during imitative interaction. (C) Imitative robot actions. (D) Positional relation between robot and demonstrator. The position of actions that the robot

observed in front of the demonstrator is defined as 180◦, and five positions (120, 150, 180, 210, and 240◦) are labeled counterclockwise.

TABLE 1 | The structure of the CAE.

The lth layer Input Output Processing Kernel size Stride Padding

1 (120, 160, 3) (60, 80, 16) Conv (4, 4) (2, 2) (4, 4)

2 (60, 80, 16) (30, 40, 32) Conv (4, 4) (2, 2) (4, 4)

3 (30, 40, 32) (10, 10, 64) Conv (6, 8) (3, 4) (6, 8)

4 (10, 10, 64) (2, 2, 128) Conv (10, 10) (5, 5) (10, 10)

5 512 250 Linear − − −

6 250 10 Linear − − −

7 10 250 Linear − − −

8 250 512 Linear − − −

9 (2, 2, 128) (10, 10, 64) Deconv (10, 10) (5, 5) (10, 10)

10 (10, 10, 64) (30, 40, 32) Deconv (6, 8) (3, 4) (6, 8)

11 (30, 40, 32) (60, 80, 16) Deconv (4, 4) (2, 2) (4, 4)

12 (60, 80, 16) (120, 160, 3) Deconv (4, 4) (2, 2) (4, 4)

In the “Processing” column, conv, deconv, and linear respectively indicate convolutional encoding, deconvolutional decoding, and fully-connected transformation. The input dimensions

for convolutional and deconvolutional layers are shown as (height,width, channel), and fully-connected layers are shown as d.

for input to the MTRNN were created by connecting several
combinations of imitative tasks. In this case, training sequences
were sequences of four randomly selected imitative tasks, with
overlapping allowed. An interval of 5–30 time steps was inserted
between the connected time series. The robot retained the same
pose during this interval. Under these conditions, 100 sequences
were generated as MTRNN training data.

While there were 20 combinations of imitative tasks,
we trained the MTRNN with 10 combinations to evaluate
generalizability to unlearned combinations. Table 2 shows the 10
combinations used for MTRNN training to predict the next state
of joint angles and visual features. There were 10 joint angles and

TABLE 2 | MTRNN training sequences.

120◦ 150◦ 180◦ 210◦ 240◦

move-side C W C W C

move-up W C W C W

Rows show actions, and columns show positional relationships. In each cell, characters C

andW indicate the manipulated object (chick or watering can). The time sequence indicated

in each cell is used for MTRNN training.

10 extracted visual features, for a total of 20 dimensions input
to the MTRNN. We set the number of neural units in the FC
and SC layers as 180 and 20 and time constant values as 2.0 and
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FIGURE 4 | Image reconstruction by trained CAE. The upper figure shows an image of a [move-side, chick] demonstration, and the lower figure shows an image of

[move-up, watering can] generated by the robot.

64.0, respectively. For training, we used the Adam optimizer with
hyperparameters α = 0.01, β1 = 0.9, and β2 = 0.99. Learnable
parameters were updated with these settings 10,000 times.

4. TRAINING RESULTS

4.1. Reconstructed Images by CAE
After CAE training, the mean squared error between trained
images and their reconstructed output was at most 0.0141. The
worst mean squared error between untrained and reconstructed
images was 0.0150. Figure 4 shows a selection of reconstructed
and untrained images. The reconstructed image in Figure 4

suggests that the trained CAE could regenerate original input
images. We applied principal component analysis to visual
features extracted by the CAE at the beginnings of the
demonstrations and robotic actions. As shown in Figure 5A, the
positional relationships between the demonstrator and the robot
were separated in the visual features at the beginning of the
demonstrations. Figure 5B shows that the manipulated objects
were separated in the visual features at the beginning of the
robotic actions. The CAE could extract the visual features from
images, thus we used time series of the extracted visual features
for training of the MTRNN. An example of a time series of the
extracted visual features is shown in Figure 5C.

4.2. Robot Action Generation
After MTRNN training, we evaluated the mean squared error
between trained target sequences and predicted output, which
was 0.00140 at worst. We input new sequences generated with
the combination including untrained series, and evaluated the

mean squared error. In that case, the evaluated value was 0.00164
at worst. Figure 6 shows the MTRNN-predicted output against
the untrained input [move-side, chick] as observed from position
150◦. By using predicted output of theMTRNN against untrained
input, the robot could imitate demonstrator actions.

4.3. Internal States in MTRNN
Principal component analysis was performed on the internal
MTRNN state to grasp the internal structure the MTRNN
acquired through predictive learning of robot sensory-motor
information. We conducted PCA on internal states in the FC and
SC layers at the time when the demonstrator ended the actions.
Figure 7 shows the difference in the positional relationship
between the demonstrator and the robot in the FC layer, and
Figure 8 shows the difference between imitative actions and
manipulated objects. As shown in Figure 7, the FC layer in the
MTRNN separated positional relationships between the robot
and the demonstrator when demonstrator actions were complete.
At the same time, differences in imitative actions are clustered
in the plane described by PC1 and PC2 of the internal states
in the SC layer (see the upper graph in Figure 8). In contrast,
in the plane described by PC3 and PC4 the differences between
manipulated objects are separated by the dashed line in the lower
graph in Figure 8.

We next extracted internal states in the SC layer at the time
when the robot starts its action, and plotted the PCA results in
Figure 9. As that figure shows, combinations of imitative actions
and manipulated objects were clustered in the SC layer. The
actions were distinguished at the beginning of robot imitation, so
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FIGURE 5 | Visual features extracted by the CAE: (A) principal components of the visual features at the beginning of demonstrations (PC1–PC2), (B) principal

components of the visual features at the beginning of robotic actions (PC1–PC2), and (C) an example of a time series of the visual features for

[move− side,watering− can, 150◦].

FIGURE 6 | The predicted output of an untrained [move− side, chick] sequence observed from the 150◦ position. This figure shows only the prediction for both arms.

The horizontal axis indicates time steps, and the vertical axis represents predicted output of the joint angles. The solid and dotted lines show output by the MTRNN

and target sequences, respectively.
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FIGURE 7 | Results of PCA of the internal states in the FC layer when demonstrator actions are finished. PC1, PC2, and PC3 are plotted in the 3D space. Numbers in

parentheses indicate contribution ratios of each principle component. Filled points are trained imitative patterns, and others are unlearned patterns. The positional

relationships are separated in the 3D space.

the robot could map observed actions to corresponding imitative
actions in advance. Similarly, the robot could acquire an ability
to carry out imitative actions while retaining information about
manipulated objects in the internal MTRNN states. Furthermore,
unlearned patterns indicated in Figure 9 were recognized, so the
MTRNN could acquire the ability to generalize via combinations
of actions and manipulated objects.

One time step during the robot action was chosen and the
internal states were analyzed at that time. Since robot motions
comprised 160 steps, we chose the middle (80th) time step and
visualized the internal states by PCA. Figure 10 shows internal
states of the FC layer at that time, and confirms that the robot
distinguished between different combinations of actions and
manipulations while performing imitative actions. In contrast,
principle components in the FC layer do not show positional
relations between the demonstrator and the robot. Therefore,
the robot could transform observations into actions regardless
of the positional relation. Finally, to confirm how internal
MTRNN states transit during imitative interaction, we plotted
the time development of neural units in the SC layer during
interaction in a plane. Figure 11 shows transitions of neural
activities in the SC layer during imitative interactions. The
positional relationship between the demonstrator and the robot
is fixed as 120◦, and combinations of actions and manipulated
objects are separately shown. The figure shows that the internal
states for all patterns start from the beginning of demonstrator

actions (©), transit to robot actions (△), and finally reach
the same point where manipulated objects are passed from the
robot to the demonstrator (�). Since the internal states always
reach the same point, the robot could continue to recognize
the actions, manipulated objects, and positional relations after
a single imitative interaction. Other positional relations also
acquired results similar to those in Figure 11.

5. DISCUSSION

We proposed a possible imitative model that allows a robot
to acquire the ability to recognize positional relations between
the demonstrator, and to transform observed actions into
robot actions. The imitative model had two neural networks:
(1) a CAE that was trained to extract visual features from
captured raw images, and (2) an MTRNN that integrated
and predicted sensory-motor information. Through training
of image reconstruction by the CAE, the robot could extract
visual features from raw images captured by its camera. By
sensory-motor integration through predictive learning with the
MTRNN, the robot could recognize information that relates
imitative interactions, such as positional relations between the
demonstrator and the robot. In the rest of this section, we
compare earlier studies with our current work, and clarify the
distinction between them.
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FIGURE 8 | Results of PCA of internal states in the SC layer when

demonstrator actions are finished. Numbers in parentheses indicate

contribution ratios of each principle component. Filled points are trained

imitative patterns, and others are unlearned patterns. In the upper figure

(PC1–PC2), differences of actions are separated in the PC1 direction. In the

lower figure (PC3–PC4), differences of manipulated objects are classified by

the dashed line.

From the viewpoint of acquiring positional relations between
the demonstrator and robot, our proposed model allows the
robot to recognize positional relations via predictive learning of
sensory-motor sequences. By including differences in positions
between the demonstrator and the robot, the proposed learning
model might be forced to optimize these differences during
predictive learning. Thanks to the hierarchical structure of the
MTRNN and the sequence to sequence learning methods, the
robot might come to process positional differences in the FC
layer (shown in Figure 7), and possess information required
for robot actions, such as kinds of actions and manipulated

FIGURE 9 | Internal states in the SC layer at the beginning of robot actions

(PC1–PC2). Filled points indicate trained imitative patterns, and outlined marks

are unlearned. Combinations of imitative actions and manipulated objects can

be clustered by the two dotted lines.

objects in the SC layer (see Figures 8, 9). In this work, the
sequence to sequence learning method was tried for encoding
the demonstrator’s actions into the plan of robotic actions.
Thus, the information necessary for the robotic actions may
be encoded in the SC layer, and the information necessary
for the current prediction may appear in the FC layer. In the
current experiment, the robotic actions do not require any
positional relationships between the demonstrator and the robot.
Therefore, positional relationships may remain in the FC layer.
Furthermore, from Figure 10, conducting sequence to sequence
learning that translates demonstrator actions into robot actions
might allow the robot to properly transform observed actions
into the same actions. In previous works, positional relations
between demonstrator and robot were represented by coordinate
transformations described as mathematical formulations (Billard
et al., 2004; Lopes et al., 2010). Our proposed model requires
no designed transformation to acquire positional relations
between the demonstrator and robot. In this experiment,
the robotic head moved through imitative interaction, and its
joint angles differed for each positional relationship during
the demonstration phase. These difference in the robotic
head depended on the positional relationships between the
demonstrator and the robot. Thus, the proposed learning
model might require optimizing for these differences during
predictive learning. Through predictive learning of sensory-
motor sequences, including positional differences between the
demonstrator and robot, the robot could automatically recognize
differences and transform demonstrator actions into robot
actions. Our previous work (Nakajo et al., 2015) allowed robots
to acquire information about actions and positional relations by
labeling this information and providing constraints that make
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FIGURE 10 | Internal states in the FC layer while conducting robot actions (PC1–PC2–PC3). Filled points indicate trained imitative patterns, and outlined marks are

unlearned patterns. Actions and objects are distinguished between in this 3D space, but positional differences between the demonstrator are ignored.

FIGURE 11 | Transition of neural activities in the SC layer during imitative interaction (PC1–PC2). The positional relationship between the demonstrator and the robot

is fixed as 120◦, and combinations of actions and manipulated objects are separately plotted. Symbols ©, △, and � respectively indicate the beginning of

demonstrator actions, the beginning of robot actions, and the end of passing objects to the demonstrator. Filled marks indicate trained patterns, and others indicate

unlearned patterns. All transitions start from © points, pass through △, and finally return to similar � points near the beginning of demonstrator actions (©).
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activities of neural units representing the same information
close. In contrast, the current work eliminates labeling of actions
and positional relations by conducting sequence to sequence
learning.

From the perspective of action translations, sequence to
sequence learning methods might contribute to learning how to
translate demonstrator actions into robot actions. As Figures 7,
8 show, the robot recognized positional relations, actions,
and manipulated objects in the demonstration phase. From
Figure 10, after a demonstration, the robot could perform
observed actions regardless of positional relation. Thanks to
the characteristics of sequence to sequence learning, which can
translate one multidimensional sequence into another sequence,
the robot acquired the ability to choose information necessary
for conducting actions. In addition, we conducted a validation
trial in which the demonstrations from untrained positional
relationships (135, 165, 195, and 225◦) were given to the
MTRNN. The demonstrations observed from all untrained
positions could be translated into the proper robotic actions
by the MTRNN. On the other hand, although the MTRNN
could map the untrained positional relationships into the points
between the trained positional relationships, sometimes mapping
failed and these relationships appeared at different points in
the PCA space of Figure 7. These failures might come from
visual features extracted by the CAE. In the current experiment,
differences in the positional relationships were present in the
visual images and the joint angles of the robotic head. However,
the CAE did not learn to extract visual features from the
untrained positional relationships. Thus, it may be difficult to
extract these visual features with the CAE, which could affect
predictions by the MTRNN. Previous studies applied separate
modules to transform positional differences (Ogata et al., 2009;
Liu et al., 2017; Sermanet et al., 2017). Ogata et al. (2009)
used a mixture-of-experts algorithm, where each expert module
translated demonstrator actions provided from a different
position. Positional relations that the robot recognized were thus
limited by the number of experts, although the robot could
imitate observed actions from various positions. In this paper,
every positional relationship is acquired within the internal
structure of a single RNN, so the robot can process various
positional relations. Sermanet et al. (2017) and Liu et al. (2017)
used deep neural networks that associated demonstrator views
with robot views. These methods were very powerful, because
no previous knowledge was required to associate the views.
However, third-person views were synchronized with robot views
where needed to translate actions. In this paper, the robot
required its own views, so a robot-mounted camera was necessary
in an actual environment. Furthermore, from the viewpoint of
transforming actions, previous works used separate modules to
extract invariances that were included in views, and additional
training was required to learn robot actions. Our proposed
model allowed the robot to simultaneously learn recognition of
positional relations and action transformation, so no pre-training
was needed to integrate sensory-motor information.

When we train the CAE to extract visual features from
the robot’s vision, we discretely input visual frames. However,
in sensory-motor integration for achieving sequential tasks,

visual feature learning in which the learning model sequentially
predicts images may be required. In the experiment described
in this paper, robot actions were determined at the end of
the demonstration, and only passing of objects occurs between
the end of demonstrator actions and the beginning of robot
actions. Thus, both internal representations in the SC layer
might be similar. However, discrimination of manipulated
objects was not acquired at the end of demonstrator actions, as
shown in Figure 8. Discrimination of manipulated objects was
instead achieved at the beginning of robot actions, as shown in
Figure 9. This difference in representations might come from
prediction error arising from visual information. For the CAE,
the difficulty of reconstructing any object comes from the size
of object regions. Specifically, reconstructing smaller objects is
more difficult than larger objects. In this paper, the regions
of manipulated objects during demonstration are smaller than
those during robot actions. It thus seems more difficult for the
CAE to reconstruct manipulated objects in the demonstration
phase. This difficulty of reconstruction might affect sensory-
motor integration, as seen in the internal representations in the
SC layer. Video prediction in which the learning model is trained
to sequentially predict images would contribute to overcoming
this problem. Thanks to sequential prediction, the learningmodel
applies histories of past predictions to the current prediction.
Moreover, we separately trained the CAE and the MTRNN.
Therefore, through training of sensory-motor integration with
the MTRNN, no feedback was sent to visual processing by the
CAE. However, to allow the robot to more properly process
sensory-motor sequences, the prediction error should affect all
processing in the learning model. A previous work by Hwang
and Tani (2017) prepared a neural network that processes visual
sequences, and another that controls the robot. By combining
two neural networks through another subnetwork, they realized
end-to-end training of sensory-motor integration. Our learning
model has a structure similar to the model proposed by Hwang
and Tani (2017), so combining two neural networks through
another subnetwork might also be applicable to the proposed
method.

We conducted sequence to sequence learning to allow the
robot to transform each demonstrator action into robot actions.
However, by giving the learning model pairs of demonstrator
and robot actions that differ from the demonstrator’s, sequence
to sequence learning can realize translation of demonstrator
actions into robot actions differing from the demonstrator’s.
Furthermore, we gave only one-to-one pairs of demonstrator
and robot actions as training data during sequence to sequence
learning. The robot can thus only imitate demonstrated actions
in a single way, and cannot acquire imitative ability that performs
demonstrated actions with equivalent goals but conducted by
differing means, such as using both hands vs. using only one
hand. Such an imitative ability is important for robots, but
has not yet been realized by current methods using sequence
to sequence learning. To realize this imitative ability, in future
studies we should enrich training data to allow the robot to
imitate demonstrated actions by various means. In the training
data, the demonstrator and robot conduct equivalent actions
by various means. Through training pairs of demonstrator and
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robot actions, the robot might come to imitate demonstrated
actions in various ways. As has been found in the field of
neural machine translation (Cho et al., 2014; Johnson et al.,
2016), RNNs with an encoder–decoder architecture trained
by sequence to sequence learning methods can acquire both
syntactic and semantic structures. Thus, by applying sequence to
sequence learning to action learning by robots, RNNsmight allow
robots to capture the underlying structures of demonstrated
actions.

In this paper, imitative learning using a sequence to
sequence learning method required an RNN to deal with long
sequences. Therefore, RNNs other than MTRNN could be used
to learn sensory-motor sequences. For example, we tried a
continuous-time recurrent neural network (CTRNN) for the
current experiment. Although the CTRNN generated the trained
imitative patterns after predictive learning, it sometimes failed to
generate untrained imitative patterns. As another example, it is
well known that the long short-term memory technique (LSTM)
can process long sequences because of its gating mechanisms.
Thus, replacing MTRNN with LSTM will yield similar results.
Although an RNN other than MTRNN could have been used,
we adopted MTRNN because of its simpler representation of the
internal state.

Moreover, future studies from the viewpoint of imitative
learning should discuss the existence of mirror neurons
(Rizzolatti et al., 1996), which by themselves show common

ignition states in the imitation ability of primates with
the perception of other acts and movement. This mirror
neuron system has also been discussed from the viewpoint of
cognitive development robotics, because human beings lead the
development of behavioral understandings in others (Nagai et al.,
2011; Arie et al., 2012; Kawai et al., 2012). In a previous study
(Nakajo et al., 2015), we realized robot acquisition of common
neuronal transitions in the robot’s own and other behaviors
by constraint to neurons representing labeled information, but
the internal states of all neurons were separated according to
their own actions in this work. Therefore, as a future method
for realizing neuron activity simulating mirror neurons, it is
conceivable to consider an imitation experiment using a group
of neurons with slow response speeds in the context layer of the
RNN.
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