16 research outputs found
Investigation of Low Reynolds Number Flow and Heat Transfer of Louvered Surfaces
This study focuses on the investigation of flow behavior at low Reynolds numbers by the experimental and numerical performance testing of micro-channel heat exchangers. An experimental study of the heat transfers and pressure drop of compact heat exchangers with louvered fins and flat tubes was conducted within a low air-side Reynolds number range of 20 \u3c ReLp \u3c 225. Using an existing low-speed wind tunnel, 26 sample heat exchangers of corrugated louver fin type, were tested. New correlations for Colburn j and Fanning friction f factor have been developed in terms of non-dimensional parameters. Within the investigated parameter ranges, it seems that both the j and f factors are better represented by two correlations in two flow regimes (one for ReLp = 20 – 80 and one for ReLp = 80 – 200) than a single regime correlation in the power-law format. The results support the conclusion that airflow and heat transfer at very low Reynolds numbers behaves differently from that at higher Reynolds numbers. The effect of the geometrical parameters on the heat exchanger performance was investigated.
The numerical investigation was conducted for further understanding of the flow behavior at the range of experimentally tested Reynolds number. Ten different heat exchanger geometries with varied geometrical parameters obtained for the experimental studies were considered for the numerical investigation. The variations in the louver angle were the basis of the selection. The heat transfer and pressure drop performance was numerically investigated and the effect of the geometrical parameters was evaluated. Numerical results were compared against the experimental results. From the comparison, it is found that the current numerical viscous laminar models do not reflect experimentally observed transitional two regime flow behavior from fin directed to the louver directed at very low Reynolds number ranging from 20 to 200.
The flow distribution through the fin and the louver region was quantified in terms of flow efficiency. The flow regime change was observed at very low Reynolds number similar to the experimental observations. However, the effect of two regime flow change does not reflect on the thermal hydraulic performance of numerical models. New correlations for the flow efficiency � have developed in terms of non-dimensional parameters
Fabrication and Implimentation of Tuebocharger on Two Stroke Vehicle
In present situation everybody in this world needs to ride a high powered, high fuel efficient and less emission two wheelers. In order to meet the requirements of the people an attempt have been made this in this project to increase the power by using the exhaust gas of the engine by passing this gas on to turbine compressor arrangement. This compressor compresses the fresh air and is sent to the carburetor. Now a days the demand of the fuel is increased because of turbocharger is important to increase the performance and the fuel efficiency is increased by using turbocharger
Lipidomic "deep profiling" : an enhanced workflow to reveal new molecular species of signaling lipids
Current mass spectrometry-based lipidomics aims to comprehensively cover wide ranges of lipid classes. We introduce a strategy to capture phospho-monoester lipids and improve the detection of long-chain base phosphates (LCB-Ps, e.g., sphingosine-1-phosphate). Ten novel LCB-Ps (d18:2, t20:1, odd carbon forms) were discovered and characterized in tissues from human and mouse, as well in D. melanogaster and S. cerevisiae. These findings have immediate relevance for our understanding of sphingosine-1-phosphate biosynthesis, signaling, and degradation
TNFA and IL10 Polymorphisms and IL-6 and IL-10 Levels Influence Disease Severity in Influenza A(H1N1)pdm09 Virus Infected Patients
Cytokines are key modulators of immune response, and dysregulated production of proinflammatory and anti-inflammatory cytokines contributes to the pathogenesis of influenza A(H1N1)pdm09 virus infection. Cytokine production is impacted by single nucleotide polymorphisms (SNPs) in the genes coding for them. In the present study, SNPs in the IL6, TNFA, IFNG, IL17A, IL10, and TGFB were investigated for their association with disease severity and fatality in influenza A(H1N1)pdm09-affected patients with mild disease (n = 293) and severe disease (n = 86). Among those with severe disease, 41 patients had fatal outcomes. In a subset of the patients, levels of IL-2, IL-4, IL-6, IL-10, TNF, IFN-γ, and IL-17 were assayed in the plasma for their association with severe disease. The frequency of TNFA rs1800629 G/A allele was significantly higher in severe cases and survived severe cases group compared to that of those with mild infection (OR with 95% for mild vs. severe cases 2.95 (1.52–5.73); mild vs. survived severe cases 4.02 (1.84–8.82)). IL10 rs1800896-rs1800872 G-C haplotype was significantly lower (OR with 95% 0.34 (0.12–0.95)), while IL10 rs1800896-rs1800872 G-A haplotype was significantly higher (OR with 95% 12.11 (2.23–76.96)) in fatal cases group compared to that of the mild group. IL-6 and IL-10 levels were significantly higher in fatal cases compared to that of survived severe cases. IL-6 levels had greater discriminatory power than IL-10 to predict progression to fatal outcome in influenza A(H1N1)pdm09 virus-infected patients. To conclude, the present study reports the association of TNFA and IL10 SNPs with severe disease in Influenza A(H1N1)pdm09 virus-infected subjects. Furthermore, IL-6 levels can be a potential biomarker for predicting fatal outcomes in Influenza A(H1N1)pdm09 virus infected subjects
Lipidomic “Deep Profiling”: An Enhanced Workflow to Reveal New Molecular Species of Signaling Lipids
Current
mass spectrometry-based lipidomics aims to comprehensively
cover wide ranges of lipid classes. We introduce a strategy to capture
phospho-monoester lipids and improve the detection of long-chain base
phosphates (LCB-Ps, e.g., sphingosine-1-phosphate). Ten novel LCB-Ps
(d18:2, t20:1, odd carbon forms) were discovered and characterized
in tissues from human and mouse, as well in <i>D. melanogaster</i> and <i>S. cerevisiae</i>. These findings have immediate
relevance for our understanding of sphingosine-1-phosphate biosynthesis,
signaling, and degradation
Sequential Electrochemical Unzipping of Single-Walled Carbon Nanotubes to Graphene Ribbons Revealed by in Situ Raman Spectroscopy and Imaging
We report an in situ Raman spectroscopic and microscopic investigation of the electrochemical unzipping of single-walled carbon nanotubes (SWNTs). Observations of the radial breathing modes (RBMs) using Raman spectral mapping reveal that metallic SWNTs are opened up rapidly followed by gradual unzipping of semiconducting SWNTs. Consideration of the resonant Raman scattering theory suggests that two metallic SWNTs with chiralities (10,4) and (12, 0) get unzipped first at a lower electrode potential (036 V) followed by the gradual unzipping of another two metallic tubes, (9, 3) and (10, 1), at a relatively higher potential (1.16 V). The semiconducting SWNTs with chiralities (11, 7) and (12, 5), however, get open up gradually at +/- 1.66 V. A rapid decrease followed by a subsequent gradual decrease in the metallicity of the SWNT ensemble as revealed from a remarkable variation of the peak width of the G band complies well with the variations of RBM. Cyclic voltammetry also gives direct evidence for unzipping in terms of improved capacitance after oxidation followed by more important removal of oxygen functionalities during the reduction step, as reflected in subtle changes of the morphology confirming the formation of graphene nanoribbons. The density functional-based tight binding calculations show additional dependence of chirality and diameter of nanotubes on the epoxide binding energies, which is in agreement with the Raman spectroscopic results and suggests a possible mechanism of unzipping determined by combined effects of the structural characteristics of SWNTs and applied field