313 research outputs found

    Clay swelling of Quaternary and Paleogene deposits in the south-eastern flanks of West Siberian iron ore basin

    Get PDF
    Revealing soil swelling and estimation of swelling rate are of great importance at the initial survey stages as well as the bases for further determination of more accurate factors used for selection of recovery methods and facility design. The paper states briefly the most conventional prediction express-methods and determination of swelling indicators, the results of laboratory research in clay composition and properties, free swell index of Quaternary and Paleogene clays in the south-east of West Siberian iron-ore, gives the estimates of the swelling rate. The results have been statistically analyzed, revealing the relationship of properties, on the basis of which the correlation dependencies are suggested to predict the free swell index as well as to apply it for frost heave prediction

    Cathepsin b: a potential prognostic marker for inflammatory breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer. In non-IBC, the cysteine protease cathepsin B (CTSB) is known to be involved in cancer progression and invasion; however, very little is known about its role in IBC.</p> <p>Methods</p> <p>In this study, we enrolled 23 IBC and 27 non-IBC patients. All patient tissues used for analysis were from untreated patients. Using immunohistochemistry and immunoblotting, we assessed the levels of expression of CTSB in IBC versus non-IBC patient tissues. Previously, we found that CTSB is localized to caveolar membrane microdomains in cancer cell lines including IBC, and therefore, we also examined the expression of caveolin-1 (cav-1), a structural protein of caveolae in IBC versus non-IBC tissues. In addition, we tested the correlation between the expression of CTSB and cav-1 and the number of positive metastatic lymph nodes in both patient groups.</p> <p>Results</p> <p>Our results revealed that CTSB and cav-1 were overexpressed in IBC as compared to non-IBC tissues. Moreover, there was a significant positive correlation between the expression of CTSB and the number of positive metastatic lymph nodes in IBC.</p> <p>Conclusions</p> <p>CTSB may initiate proteolytic pathways crucial for IBC invasion. Thus, our data demonstrate that CTSB may be a potential prognostic marker for lymph node metastasis in IBC.</p

    Phenotypic Properties of Collagen in Dentinogenesis Imperfecta Associated with Osteogenesis Imperfecta

    Get PDF
    Introduction: Dentinogenesis imperfecta type 1 (OIDI) is considered a relatively rare genetic disorder (1:5000 to 1:45,000) associated with osteogenesis imperfecta. OIDI impacts the formation of collagen fibrils in dentin, leading to morphological and structural changes that affect the strength and appearance of teeth. However, there is still a lack of understanding regarding the nanoscale characterization of the disease, in terms of collagen ultrastructure and mechanical properties. Therefore, this research presents a qualitative and quantitative report into the phenotype and characterization of OIDI in dentin, by using a combination of imaging, nanomechanical approaches. Methods: For this study, 8 primary molars from OIDI patients and 8 primary control molars were collected, embedded in acrylic resin and cut into longitudinal sections. Sections were then demineralized in 37% phosphoric acid using a protocol developed in-house. Initial experiments demonstrated the effectiveness of the demineralization protocol, as the ATR-FTIR spectral fingerprints showed an increase in the amide bands together with a decrease in phosphate content. Structural and mechanical analyses were performed directly on both the mineralized and demineralized samples using a combination of scanning electron microscopy, atomic force microscopy, and Wallace indentation. Results: Mesoscale imaging showed alterations in dentinal tubule morphology in OIDI patients, with a reduced number of tubules and a decreased tubule diameter compared to healthy controls. Nanoscale collagen ultrastructure presented a similar D-banding periodicity between OIDI and controls. Reduced collagen fibrils diameter was also recorded for the OIDI group. The hardness of the (mineralized) control dentin was found to be significantly higher (p<0.05) than that of the OIDI (mineralized) dentine. Both the exposed peri- and intratubular dentinal collagen presented bimodal elastic behaviors (Young's moduli). The control samples presented a stiffening of the intratubular collagen when compared to the peritubular collagen. In case of the OIDI, this stiffening in the collagen between peri- and intratubular dentinal collagen was not observed and the exposed collagen presented overall a lower elasticity than the control samples. Conclusion: This study presents a systematic approach to the characterization of collagen structure and properties in OIDI as diagnosed in dentin. Structural markers for OIDI at the mesoscale and nanoscale were found and correlated with an observed lack of increased elastic moduli of the collagen fibrils in the intratubular OIDI dentin. These findings offer an explanation of how structural changes in the dentin could be responsible for the failure of some adhesive restorative materials as observed in patients affected by OIDI

    The Role of the Reducible Dopant in Solid Electrolyte-Lithium Metal Interfaces

    Get PDF
    Garnet solid electrolytes, of the form Li7La3Zr2O12 (LLZO), remain an enticing prospect for solid-state batteries owing to their chemical and electrochemical stability in contact with metallic lithium. Dopants, often employed to stabilize the fast ion conducting cubic garnet phase, typically have no effect on the chemical stability of LLZO in contact with Li metal but have been found recently to impact the properties of the Li/garnet interface. For dopants more “reducible” than Zr (e.g., Nb and Ti), contradictory reports of either raised or reduced Li/garnet interfacial resistances have been attributed to the dopant. Here, we investigate the Li/LLZO interface in W-doped Li7La3Zr2O12 (LLZWO) to determine the influence of a “reducible” dopant on the electrochemical properties of the Li/garnet interface. Single-phase LLZWO is synthesized by a new sol–gel approach and densified by spark plasma sintering. Interrogating the resulting Li/LLZWO interface/interphase by impedance, muon spin relaxation and X-ray absorption spectroscopies uncover the significant impact of surface lithiation on electrochemical performance. Upon initial contact, an interfacial reaction occurs between LLZWO and Li metal, leading to the reduction of surface W6+ centers and an initial reduction of the Li/garnet interfacial resistance. Propagation of this surface reaction, driven by the high mobility of Li+ ions through the grain surfaces, thickens the resistive interphases throughout the material and impedes Li+ ion transport between the grains. The resulting high resistance accumulating in the system impedes cycling at high current densities. These insights shed light on the nature of lithiated interfaces in garnet solid electrolytes containing a reducible dopant where high Li+ ion mobility and the reducible nature of the dopant can significantly affect electrochemical performance

    IL-10 correlates with the expression of carboxypeptidase B2 and lymphovascular invasion in inflammatory breast cancer: The potential role of tumor infiltrated macrophages

    Get PDF
    Pro-carboxypeptidase B2 (pro-CPB2) or thrombin-activatable fibrinolysis inhibitor (TAFI) is a glycoprotein encoded by the CPB2 gene and deregulated in several cancer types, including breast cancer. Thrombin binding to thrombomodulin (TM), encoded by THBD, is important for TAFI activation. CPB2 gene expression is influenced by genetic polymorphism and cytokines such as interleukin 10 (IL-10). Our previous results showed that tumor infiltrating monocytes/macrophages (CD14+/CD16+) isolated from inflammatory breast cancer (IBC) patients’ secrete high levels of IL-10. The aim of the present study is to test genetic polymorphism and expression of CPB2 in healthy breast tissues and carcinoma tissues of non-IBC and IBC patients. Furthermore, to investigate whether IL-10 modulates the expression of CPB2 and THBD in vivo and in-vitro. We tested CPB2 Thr325Ile polymorphism using restriction fragment length polymorphism, (RFLP) technique in healthy and carcinoma breast tissues. The mRNA expression of CPB2, THBD and IL10 were assessed by RT-qPCR. Infiltration of CD14+ cells was assessed by immunohistochemistry. In addition, we investigated the correlation between infiltration of CD14+ cells and expression of IL10 and CPB2. Furthermore, we correlated IL10 expression with the expression of both CPB2 and THBD in breast carcinoma tissues. Finally, we validated the role of recombinant IL-10 in regulating the expression of CPB2 and THBD using different breast cancer cell lines. Our results showed that CPB2 genotypes carrying the high-risk allele [Thr/Ile (CT) and Ile/Ile (TT)] were more frequent in both IBC and non-IBC patients compared to control group. CPB2 genotypes did not show any statistical correlation with CPB2 mRNA expression levels or patients’ clinical pathological properties. Interestingly, CPB2 and IL10 expression were significantly higher and positively correlated with the incidence of CD14+ cells in carcinoma tissues of IBC as compared to non-IBC. On the other hand, THBD expression was significantly lower in IBC carcinoma versus non-IBC tissues. Based on molecular subtypes, CPB2 and IL10 expression were significantly higher in triple negative (TN) as compared to hormonal positive (HP) carcinoma tissues of IBC. Moreover, CPB2 expression was positively correlated with presence of lymphovascular invasion and the expression of IL10 in carcinoma tissues of IBC patients. Furthermore, recombinant human IL-10 stimulated CPB2 expression in SUM-149 (IBC cell line) but not in MDA-MB-231 (non-IBC cell line), while there was no significant effect THBD expression. In conclusion, carcinoma tissues of IBC patients are characterized by higher expression of CPB2 and lower expression of THBD. Moreover, CPB2 positively correlates with IL10 mRNA expression, incidence of CD14+ cells and lymphovascular invasion in IBC patients. IL-10 stimulated CPB2 expression in TN-IBC cell line suggests a relevant role of CPB2 in the aggressive phenotype of IBC

    The association between different blood group systems and susceptibility to COVID-19: a single center cross-sectional study from Saudi Arabia

    Get PDF
    Background: Since the beginning of COVID-19 pandemic, many associated factors have been investigated to clarify the susceptibility and severity among the affected individuals. Biological markers can play an important role in identification of individual susceptibility to such pandemic. Growing evidence suggest the influence of different blood group systems on susceptibility to COVID-19 virus, with a particular blood type conferring selection advantage. Objectives: The study aimed to determine the association of ABO, Rhesus (D) and P1 blood groups with COVID-19 susceptibility in Taif city, Western Saudi Arabia. Methods: ABO, D and P1 blood antigens were determined in 104 blood samples of COVID-19 patients versus 100 control samples using either automated immunohematology analyser or test tube method. Statistical differences between patients and control samples were calculated based on p-value where results of ≤ 0.05 were considered significant. Results: O+ve blood group constituted the predominant type among the studied samples. Determination of P1 antigen showed significant association where Anti-P1 was positive in 76.9% of patients compared to 61.0% of controls with a P value of 0.01 conferring the susceptibility of P1+ve patients to COVID-19. Conclusion: Although our study showed no significant association between ABO and D, and susceptibility to COVID-19, there was a significant association between P1+ve and COVID-19. P1+ve participants were 2.131 times more associated with the risk of COVID-19 infection than those with Anti P1-ve. Thus, P1 antigen can be used as a biological marker for identification of individuals susceptibility to COVID-19. It is strongly advised that such individuals should consider extra protective measures.Further studies on other contributing factors should also be considered for more scientific clarity. Keywords: ABO Blood group; Rh(D); P1 antigen, COVID-19

    Novel parent-of-origin-specific differentially methylated loci on chromosome 16

    Get PDF
    BACKGROUND: Congenital malformations associated with maternal uniparental disomy of chromosome 16, upd(16)mat, resemble those observed in newborns with the lethal developmental lung disease, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Interestingly, ACDMPV-causative deletions, involving FOXF1 or its lung-specific upstream enhancer at 16q24.1, arise almost exclusively on the maternally inherited chromosome 16. Given the phenotypic similarities between upd(16)mat and ACDMPV, together with parental allelic bias in ACDMPV, we hypothesized that there may be unknown imprinted loci mapping to chromosome 16 that become functionally unmasked by chromosomal structural variants. RESULTS: To identify parent-of-origin biased DNA methylation, we performed high-resolution bisulfite sequencing of chromosome 16 on peripheral blood and cultured skin fibroblasts from individuals with maternal or paternal upd(16) as well as lung tissue from patients with ACDMPV-causative 16q24.1 deletions and a normal control. We identified 22 differentially methylated regions (DMRs) with ≥ 5 consecutive CpG methylation sites and varying tissue-specificity, including the known DMRs associated with the established imprinted gene ZNF597 and DMRs supporting maternal methylation of PRR25, thought to be paternally expressed in lymphoblastoid cells. Lastly, we found evidence of paternal methylation on 16q24.1 near LINC01082 mapping to the FOXF1 enhancer. CONCLUSIONS: Using high-resolution bisulfite sequencing to evaluate DNA methylation across chromosome 16, we found evidence for novel candidate imprinted loci on chromosome 16 that would not be evident in array-based assays and could contribute to the birth defects observed in patients with upd(16)mat or in ACDMPV

    A phase 1/2 open label nonrandomized clinical trial of intravenous 2-hydroxypropyl-β-cyclodextrin for acute liver disease in infants with Niemann-Pick C1

    Get PDF
    Introduction: Niemann-Pick C (NPC) is an autosomal recessive disease due to defective NPC1 or NPC2 proteins resulting in Methods: Infants received intravenous 2HPBCD twice a week for 6 weeks, followed by monthly infusion for 6-months. Primary outcome measure was reduction of plasma (3β,5α,6β-trihydroxy-cholan-24-oyl) glycine (TCG), a bile acid generated from cholesterol sequestered in lysosome. Results: Three participants completed this protocol. A fourth patient received intravenous 2HPBCD under an emergency investigational new drug study but later expired from her underlying condition. The three protocol patients are living and have improved liver enzymes and TCG. No patient has experienced a drug-related adverse event. Conclusion: Intravenous 2HPBCD was tolerated in three infants with liver disease due to NPC
    corecore