446 research outputs found

    Integrated organic light-emitting device/fluorescence-based chemical sensors

    Full text link
    A fluorescent chemical sensor platform, integrating an organic light-emitting device (OLED) light-source with a fluorescent probe, is demonstrated for a subsecond-fast oxygen sensor. The integration results in strong light coupling and negligible heating of the sensor film or analyte. The potential in vivo operation of compact, stand-alone, battery-powered, OLED-based miniaturized sensor arrays for chemical and biological applications is discussed. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69695/2/APPLAB-81-24-4652-1.pd

    Electronic Structure of Lanthanum Hydrides with Switchable Optical Properties

    Full text link
    Recent dramatic changes in the optical properties of LaH_{2+x} and YH_{2+x} films discovered by Huiberts et al. suggest their electronic structure is described best by a local model. Electron correlation is important in H^- -centers and in explaining the transparent insulating behavior of LaH_3. The metal-insulator transition at x∼0.8x\sim 0.8 takes place in a band of highly localized states centered on the HH-vacancies in the LaH_3 structure.Comment: plain tex, 3 figure

    Microelectromagnetic ferrofluid-based actuator

    Get PDF
    Computer simulations were used to investigate the performance of a microscale ferrofluid-based magnetic actuator developed for liquid dispensing in microfluidic channels. The actuation was based on the movement of a ferrofluid plug in a magnetic field gradient generated by on-chip effectively infinite parallel conductors. The movement, positioning, and retaining of ferrofluid plugs with different lengths at various locations along a microfluidic channel were investigated for two cases. In case (a), the magnetic field gradient was generated by a single conductor; when the ferrofluid reached its equilibrium position, the current was switched off and the nearest neighbor conductor was energized. A similar, consecutive on/off current switching was performed for case (b), where a set of conductors was energized simultaneously

    Robust Signal Processing in Living Cells

    Get PDF
    Cellular signaling networks have evolved an astonishing ability to function reliably and with high fidelity in uncertain environments. A crucial prerequisite for the high precision exhibited by many signaling circuits is their ability to keep the concentrations of active signaling compounds within tightly defined bounds, despite strong stochastic fluctuations in copy numbers and other detrimental influences. Based on a simple mathematical formalism, we identify topological organizing principles that facilitate such robust control of intracellular concentrations in the face of multifarious perturbations. Our framework allows us to judge whether a multiple-input-multiple-output reaction network is robust against large perturbations of network parameters and enables the predictive design of perfectly robust synthetic network architectures. Utilizing the Escherichia coli chemotaxis pathway as a hallmark example, we provide experimental evidence that our framework indeed allows us to unravel the topological organization of robust signaling. We demonstrate that the specific organization of the pathway allows the system to maintain global concentration robustness of the diffusible response regulator CheY with respect to several dominant perturbations. Our framework provides a counterpoint to the hypothesis that cellular function relies on an extensive machinery to fine-tune or control intracellular parameters. Rather, we suggest that for a large class of perturbations, there exists an appropriate topology that renders the network output invariant to the respective perturbations

    Electroluminescence-detected magnetic-resonance study of polyparaphenylenevinylene (PPV)-based light-emitting diodes

    Get PDF
    The strong electroluminescence (EL)-detected magnetic resonance of PPV-based light emitting diodes is compared to the conductivity (sigma)- and photoluminescence (PL)-detected resonances. It provides direct evidence that polaron-to-singlet exciton conversion is responsible for the EL. In contrast to the narrow PL-enhancing resonance assigned to polaron recombination, strong EL- and sigma-quenching resonances are attributed to the spin-dependent polaron-to-bipolaron decay. The half-field EL- and sigma-detected resonances of two distinct triplet excitons is believed to result from triplet-triplet fusion to singlets

    Design of high-magnetic field gradient sources for controlling magnetically induced flow of ferrofluids in microfluidic systems

    Get PDF
    The use of miniature electromagnets for ferrofluid-actuated liquid dispensing into microfluidic channels has been investigated by numerical simulations using the finite element method and measurements of fluid displacement and flow rate. The simulations illustrate the effect of structural and geometrical parameters of single and paired solenoid coils on the magnetic force experienced by the ferrofluid. Dual solenoids were used for extended fluid displacement. Ferrofluid positioning and flow rates were controlled also by using a solenoid with an iron core. The experimental measurements of fluidflow in capillaries were used to validate the modeling calculations. The results can be used as a basis for the development of on-chip ferrofluid-based devices integrated with microfluidic architectures

    Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Get PDF
    Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusions Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors

    Is three the magic number? The role of ergonomic principles in cross country comprehension of road traffic signs

    Get PDF
    Road sign comprehension plays an important part in road safety management, particularly for those drivers who are travelling in an unfamiliar country. Previous research has established that comprehension can be improved if signs are designed to adhere to ergonomic principles. However, it may be difficult for sign designers to incorporate all the principles into a single sign and may thus have to make a judgement as to the most effective ones. This study surveyed drivers in three countries to ascertain their understanding of a range of road signs, each of which conformed in varying degrees and combinations to the ergonomic principles. We found that using three of the principles was the most effective and that the most important one was that relating to standardisation; the colours and shapes used were key to comprehension. Other concepts which related to physical and spatial characteristics were less important, whilst conceptual compatibility did not aid comprehension at all. Practitioner Summary: This study explores how road sign comprehension can be improved using ergonomic principles, with particular reference to cross-border drivers. It was found that comprehension can be improved significantly if standardisation is adhered to and if at least three principles are used
    • …
    corecore