43 research outputs found

    Astrocytic dysfunction induced by ABCA1 deficiency causes optic neuropathy

    Get PDF
    Astrocyte abnormalities have received great attention for their association with various diseases in the brain but not so much in the eye. Recent independent genome-wide association studies of glaucoma, optic neuropathy characterized by retinal ganglion cell (RGC) degeneration, and vision loss found that single-nucleotide polymorphisms near the ABCA1 locus were common risk factors. Here, we show that Abca1 loss in retinal astrocytes causes glaucoma-like optic neuropathy in aged mice. ABCA1 was highly expressed in retinal astrocytes in mice. Thus, we generated macroglia-specific Abca1-deficient mice (Glia-KO) and found that aged Glia-KO mice had RGC degeneration and ocular dysfunction without affected intraocular pressure, a conventional risk factor for glaucoma. Single-cell RNA sequencing revealed that Abca1 deficiency in aged Glia-KO mice caused astrocyte-triggered inflammation and increased the susceptibility of certain RGC clusters to excitotoxicity. Together, astrocytes play a pivotal role in eye diseases, and loss of ABCA1 in astrocytes causes glaucoma-like neuropathy

    Основні підходи до розроблення дизайну упаковки

    Get PDF
    Упаковка – останній призов, який бачить покупець, і останній шанс переконати його купити товар [1], тому над розробленням цікавого, оригінального дизайну упаковки працює ціла армія професіоналів. Дизайн упаковки включає гармонічну сукупність таких елементів, як: форма, матеріал, розміри, якість виготовлення, вид друку, кольори

    Radiosensitization of human lung cancer cells by the novel purine-scaffold Hsp90 inhibitor, PU-H71.

    No full text
    The molecular chaperone heat shock protein 90 (Hsp90) is involved in the maturation and stabilization of a wide range of oncogenic client proteins for oncogenesis and malignant cell proliferation, which renders this protein a promising target in the development of cancer therapeutics. PU-H71 is a purine-scaffold Hsp90 inhibitor with less toxicity in normal cells than in cancer cells. In this study, we examined the in vitro radiosensitizing activity and molecular mechanisms of action of PU-H71 in human lung cancer cell lines. PU-H71 enhanced the sensitivity of the SQ-5 and A549 cancer cells to radiation. When the cancer cells were pre-treated with PU-H71, the repair of DNA double-strand breaks (DSBs) was markedly inhibited after irradiation compared with the cells that were not pre-treated with PU-H71, as evaluated by counting the foci of phosphorylated histone H2AX (γ-H2AX). We further demonstrated that post-irradiation, PU-H71 inhibited Rad51 foci formation, a critical protein for the homologous recombination pathway of DNA DSB repair. These data indicate that targeting Hsp90 with PU-H71 may be novel therapeutic strategy for radioresistant carcinomas
    corecore