1,776 research outputs found

    Anti-tumorigenic and Pro-apoptotic effects of CKBM on gastric cancer growth in nude mice

    Get PDF
    Natural botanical products can be integrated with western medicine to optimize the treatment outcome, increase immune function and minimize the side effects from western drug treatment. CKBM is a combination of herbs and yeasts formulated based on traditional Chinese medicinal principles. Previous study has demonstrated that CKBM is capable of improving immune responsiveness through the induction of cytokine mediators, such as TNF-α and IL-6. In this study, we aimed to investigate the effect of this immunomodulatory drug on gastric cancer growth using a human xenograft model. Gastric cancer tissues were implanted subcutaneously into athymic nude mice followed by a 14-day or 28-day of CKBM treatment. Results showed that higher doses of CKBM (0.4 or 0.8 ml/mouse/day) produced a dose-dependent inhibitory effect on gastric tumor growth after 28-day drug treatment. This was associated with a decrease of cellular proliferation by 30% with concomitant increase in apoptosis by 97% in gastric tumor cells when compared with the control group. In contrast, CKBM showed no effect on angiogenesis in gastric tumors. This study demonstrates the anti-tumorigenic action of CKBM on gastric cancer probably via inhibition of cell proliferation and induction of apoptosis, and provides future potential targets of this drug candidate on cancer therapy.published_or_final_versio

    Consecutive treatment with phytase and arazyme influence protein hydrolysis of soybean meal

    Get PDF
    Soybean meal (SBM) is the main protein supplement used in animal feed worldwide. The degree of hydrolysis (DH) of SBM treated with two enzymes viz. phytase and arazyme was investigated for the first time in this study. The DH of SBM in the treatment with arazyme increased significantly as compared to the control without enzyme application. About 1.5-times and 10-fold higher DH were observed in phytase treatment when compared to the control treatments containing no enzyme. At the end of 24 h, enzymatic hydrolysis was done through consecutive treatment with 0.5% (w/v) phytase and 0.02% (w/v) arazyme, and the protein in the hydrolysate were mostly degraded free amino acids and peptides (<6 KDa) when SDS-PAGE and fast protein liquid chromatography (FPLC) techniques used. Free amino acids contents of the soybean meal treated with phytase-arazyme increased by 2 to 14 fold as compared to products without enzyme. These results suggested that soybean meal proteins continuously treated with phytase and arazyme can be used as commercial feed additive for accelerated livestock growth.Key words: Soybean meal, phytase, arazyme, hydrolysis

    The Pre-positioned Warehouse Location Selection for International Humanitarian Relief Logistics

    Get PDF
    © 2018 This study aims to identify the most appropriate pre-positioned warehouse location for international humanitarian relief organisations. A two-step methodology is structured using fuzzy AHP and fuzzy TOPSIS to evaluate pre-positioned warehouse locations for humanitarian relief organisations. The empirical case study analysis of a humanitarian relief organisation is conducted to illustrate the use of the proposed framework for ranking alternative locations. This framework provides a more accurate, effective, and systematic decision support tool for stepwise implementation of warehouse location selection in humanitarian relief operations to increase efficiency. National stability is considered the most crucial factor for warehouse selection followed by host country cooperation. Location A was identified as the optimal warehouse location, with Locations D and E being relatively close. However, the organisation operates at Location A due to the national stability and government incentives such as land costs and customs exemption

    Electromagnetic performances and main parameter sensitivity effect on unbalance magnetic flux in a New Single‑Phase FEFSM with segmental rotor

    Get PDF
    Three-phase field excitation flux switching motor (FEFSM) with salient rotor structure has been introduced with their advantages of rotor easy temperature elimination and controllable FEC magnetic flux. Yet, the salient rotor structure is found to lead a longer magnetic flux path between stator and rotor parts, producing a weak flux linkage along with low torque performances. Hence, a new structure of single-phase FEFSM using segmental rotor with non-overlap windings is proposed with advantages of shorter magnetic flux path, light weight and robust rotor structure. Analysis on fundamental magnetic flux characteristics, armature and FEC magnetic flux linkages, cogging torque, back-Emf, various torque capabilities, refinement of unbalance magnetic flux, and torque-power versus speed characteristics are conducted using 2D FEA through JMAG Designer version 15. The results show that magnetic flux amplitude ratio has been improved by 41.2% while the highest torque and power achieved are 1.45 Nm and 343.8 W, respectively

    Prostate-specific extracellular vesicles as a novel biomarker in human prostate cancer

    Get PDF
    Extracellular vesicles (EVs) may play an important role in cancer development and progression. We aimed to investigate the prognostic potential of prostate-specific EVs in prostate cancer (PCa) patients. Plasma and prostate tissue were collected from patients who underwent surgery for PCa (n = 82) or benign prostatic hyperplasia (BPH, n = 28). To analyze the quantity of EVs in prostate, we performed transmission electron microscopy (TEM), immuno-TEM with CD63 and prostate-specific membrane antigen (PSMA), and immunofluorescence staining. After EV isolation from plasma, CD63 and PSMA concentration was measured using ELISA kits. PSMA-positive areas in prostate differed in patients with BPH, and low-, intermediate-, and high-risk PCa (2.4, 8.2, 17.5, 26.5%, p < 0.001). Plasma PSMA-positive EV concentration differed in patients with BPH, and low-, intermediate-, and high-risk PCa (21.9, 43.4, 49.2, 59.9 ng/mL, p < 0.001), and ROC curve analysis indicated that plasma PSMA-positive EV concentration differentiated PCa from BPH (AUC 0.943). Patients with lower plasma PSMA-positive EV concentration had greater prostate volume (50.2 vs. 33.4 cc, p < 0.001) and lower pathologic Gleason score (p = 0.025). During the median follow-up of 18 months, patients with lower plasma PSMA-positive EV concentration tended to have a lower risk of biochemical failure than those with higher levels of prostate-specific EVs (p = 0.085).11910Ysciescopu

    Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity

    Get PDF
    The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH.112820Ysciescopu

    Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance

    Get PDF
    Adiponectin plays a key role in the regulation of the whole-body energy homeostasis by modulating glucose and lipid metabolism. Although obesity-induced reduction of adiponectin expression is primarily ascribed to a transcriptional regulation failure, the underlying mechanisms are largely undefined. Here we show that DNA hypermethylation of a particular region of the adiponectin promoter suppresses adiponectin expression through epigenetic control and, in turn, exacerbates metabolic diseases in obesity. Obesity-induced, pro-inflammatory cytokines promote DNMT1 expression and its enzymatic activity. Activated DNMT1 selectively methylates and stimulates compact chromatin structure in the adiponectin promoter, impeding adiponectin expression. Suppressing DNMT1 activity with a DNMT inhibitor resulted in the amelioration of obesity-induced glucose intolerance and insulin resistance in an adiponectin-dependent manner. These findings suggest a critical role of adiponectin gene epigenetic control by DNMT1 in governing energy homeostasis, implying that modulating DNMT1 activity represents a new strategy for the treatment of obesity-related diseases.published_or_final_versio

    Spread of Mutant Middle East Respiratory Syndrome Coronavirus with Reduced Affinity to Human CD26 during the South Korean Outbreak

    Get PDF
    The newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe respiratory infection with a high mortality rate (similar to 35%). MERS-CoV has been a global threat due to continuous outbreaks in the Arabian peninsula and international spread by infected travelers since 2012. From May to July 2015, a large outbreak initiated by an infected traveler from the Arabian peninsula swept South Korea and resulted in 186 confirmed cases with 38 deaths (case fatality rate, 20.4%). Here, we show the rapid emergence and spread of a mutant MERS-CoV with reduced affinity to the human CD26 receptor during the South Korean outbreak. We isolated 13 new viral genomes from 14 infected patients treated at a hospital and found that 12 of these genomes possess a point mutation in the receptor-binding domain (RBD) of viral spike (S) protein. Specifically, 11 of these genomes have an I529T mutation in RBD, and 1 has a D510G mutation. Strikingly, both mutations result in reduced affinity of RBD to human CD26 compared to wild-type RBD, as measured by surface plasmon resonance analysis and cellular binding assay. Additionally, pseudotyped virus bearing an I529T mutation in S protein showed reduced entry into host cells compared to virus with wild-type S protein. These unexpected findings suggest that MERS-CoV adaptation during human-to-human spread may be driven by host immunological pressure such as neutralizing antibodies, resulting in reduced affinity to host receptor, and thereby impairs viral fitness and virulence, rather than positive selection for a better affinity to CD26. IMPORTANCE Recently, a large outbreak initiated by an MERS-CoV-infected traveler from the Middle East swept South Korea and resulted in 186 confirmed cases with 38 deaths. This is the largest outbreak outside the Middle East, and it raised strong concerns about the possible emergence of MERS-CoV mutations. Here, we isolated 13 new viral genomes and found that 12 of them possess a point mutation in the receptor-binding domain of viral spike protein, resulting in reduced affinity to the human cognate receptor, CD26, compared to the wild-type virus. These unexpected findings suggest that MERS-CoV adaptation in humans may be driven by host immunological pressure.111819Ysciescopu

    Design of an electrochemical micromachining machine

    Get PDF
    Electrochemical micromachining (μECM) is a non-conventional machining process based on the phenomenon of electrolysis. μECM became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications including microfluidics systems, stress-free drilled holes in automotive and aerospace manufacturing with complex shapes, etc. This work presents the design of a next generation μECM machine for the automotive, aerospace, medical and metrology sectors. It has three axes of motion (X, Y, Z) and a spindle allowing the tool-electrode to rotate during machining. The linear slides for each axis use air bearings with linear DC brushless motors and 2-nm resolution encoders for ultra precise motion. The control system is based on the Power PMAC motion controller from Delta Tau. The electrolyte tank is located at the rear of the machine and allows the electrolyte to be changed quickly. This machine features two process control algorithms: fuzzy logic control and adaptive feed rate. A self-developed pulse generator has been mounted and interfaced with the machine and a wire ECM grinding device has been added. The pulse generator has the possibility to reverse the pulse polarity for on-line tool fabrication.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMPICT- FoF-285614)
    corecore