11,256 research outputs found

    Pseudogap of metallic layered nickelate R2-xSrxNiO4 (R=Nd, Eu) crystals measured using angle-resolved photoemission spectroscopy

    Full text link
    We have investigated charge dynamics and electronic structures for single crystals of metallic layered nickelates, R2-xSrxNiO4 (R=Nd, Eu), isostructural to La2-xSrxCuO4. Angle-resolved photoemission spectroscopy on the barely-metallic Eu0.9Sr1.1NiO4 (R=Eu, x=1.1) has revealed a large hole surface of x2-y2 character with a high-energy pseudogap of the same symmetry and comparable magnitude with those of underdoped (x<0.1) cuprates, although the antiferromagnetic interactions are one order of magnitude smaller. This finding strongly indicates that the momentum-dependent pseudogap feature in the layered nickelate arises from the real-space charge correlation.Comment: 4 pages, 4 figures. Accepted in Physical Review Letter

    ELECTROMYOGRAPHY AND KINEMATIC CHARACTERISTICS OF OBSTACLE GAIT IN ELDERLY PARKINSON’S PATIENTS

    Get PDF
    INTRODUCTION: Falls associated with tripping over an obstacle can be dangerous, yet little is known about the strategies used for stepping over obstacles in elderly Parkinson's patients. The purpose of this study was to investigate the lower extremity muscle activity and kinematics of obstacle gait in Parkinson's patients

    The Fourth Element: Characteristics, Modelling, and Electromagnetic Theory of the Memristor

    Get PDF
    In 2008, researchers at HP Labs published a paper in {\it Nature} reporting the realisation of a new basic circuit element that completes the missing link between charge and flux-linkage, which was postulated by Leon Chua in 1971. The HP memristor is based on a nanometer scale TiO2_2 thin-film, containing a doped region and an undoped region. Further to proposed applications of memristors in artificial biological systems and nonvolatile RAM (NVRAM), they also enable reconfigurable nanoelectronics. Moreover, memristors provide new paradigms in application specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs). A significant reduction in area with an unprecedented memory capacity and device density are the potential advantages of memristors for Integrated Circuits (ICs). This work reviews the memristor and provides mathematical and SPICE models for memristors. Insight into the memristor device is given via recalling the quasi-static expansion of Maxwell's equations. We also review Chua's arguments based on electromagnetic theory.Comment: 28 pages, 14 figures, Accepted as a regular paper - the Proceedings of Royal Society

    A new limit of T-violating transverse muon polarization in the K+π0μ+νK^{+}\to\pi^{0}\mu^{+} \nu decay

    Full text link
    A search for T-violating transverse muon polarization (PTP_T) in the K+π0μ+νK^{+}\to \pi^{0}\mu^{+}\nu decay was performed using kaon decays at rest. A new improved value, PT=0.0017±0.0023(stat)±0.0011(syst)P_T= -0.0017\pm 0.0023 (stat)\pm 0.0011 (syst), was obtained giving an upper limit, PT<0.0050| P_T | < 0.0050. The T-violation parameter was determined to be Imξ=0.0053±0.0071(stat)±0.0036(syst)\xi = -0.0053 \pm 0.0071(stat)\pm 0.0036(syst) giving an upper limit, |Imξ<0.016\xi| <0.016.Comment: 5 pages, 4 figure

    Selecting the most suitable classification algorithm for supporting assistive technology adoption for people with dementia: A multicriteria framework

    Get PDF
    The number of people with dementia (PwD) is increasing dramatically. PwD exhibit impairments of reasoning, memory, and thought that require some form of self‐management intervention to support the completion of everyday activities while maintaining a level of independence. To address this need, efforts have been directed to the development of assistive technology solutions, which may provide an opportunity to alleviate the burden faced by the PwD and their carers. Nevertheless, uptake of such solutions has been limited. It is therefore necessary to use classifiers to discriminate between adopters and nonadopters of these technologies in order to avoid cost overruns and potential negative effects on quality of life. As multiple classification algorithms have been developed, choosing the most suitable classifier has become a critical step in technology adoption. To select the most appropriate classifier, a set of criteria from various domains need to be taken into account by decision makers. In addition, it is crucial to define the most appropriate multicriteria decision‐making approach for the modelling of technology adoption. Considering the above‐mentioned aspects, this paper presents the integration of a five‐phase methodology based on the Fuzzy Analytic Hierarchy Process and the Technique for Order of Preference by Similarity to Ideal Solution to determine the most suitable classifier for supporting assistive technology adoption studies. Fuzzy Analytic Hierarchy Process is used to determine the relative weights of criteria and subcriteria under uncertainty and Technique for Order of Preference by Similarity to Ideal Solution is applied to rank the classifier alternatives. A case study considering a mobile‐based self‐management and reminding solution for PwD is described to validate the proposed approach. The results revealed that the best classifier was k‐nearest‐neighbour with a closeness coefficient of 0.804, and the most important criterion when selecting classifiers is scalability. The paper also discusses the strengths and weaknesses of each algorithm that should be addressed in future research

    Possible evidence of non-Fermi liquid behavior from quasi-one-dimensional indium nanowires

    Full text link
    We report possible evidence of non-Fermi liquid (NFL) observed at room temperature from the quasi one-dimensional (1D) indium (In) nanowires self-assembled on Si(111)-7×\times7 surface. Using high-resolution electron-energy-loss spectroscopy, we have measured energy and width dispersions of a low energy intrasubband plasmon excitation in the In nanowires. We observe the energy-momentum dispersion ω\omega(q) in the low q limit exactly as predicted by both NFL theory and the random-phase-approximation. The unusual non-analytic width dispersion ζ(q)qα\zeta(q) \sim q^{\alpha} measured with an exponent α{\alpha}=1.40±\pm0.24, however, is understood only by the NFL theory. Such an abnormal width dispersion of low energy excitations may probe the NFL feature of a non-ideal 1D interacting electron system despite the significantly suppressed spin-charge separation (\leq40 meV).Comment: 11 pages and 4 figure

    Feynman diagrams versus Fermi-gas Feynman emulator

    Get PDF
    Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, presents a major goal in modern physics. However, the theoretical description of interacting Fermi systems is usually plagued by the intricate quantum statistics at play. Here we present a cross-validation between a new theoretical approach, Bold Diagrammatic Monte Carlo (BDMC), and precision experiments on ultra-cold atoms. Specifically, we compute and measure with unprecedented accuracy the normal-state equation of state of the unitary gas, a prototypical example of a strongly correlated fermionic system. Excellent agreement demonstrates that a series of Feynman diagrams can be controllably resummed in a non-perturbative regime using BDMC. This opens the door to the solution of some of the most challenging problems across many areas of physics

    Low-Energy Charge-Density Excitations in MgB2_{2}: Striking Interplay between Single-Particle and Collective Behavior for Large Momenta

    Full text link
    A sharp feature in the charge-density excitation spectra of single-crystal MgB2_{2}, displaying a remarkable cosine-like, periodic energy dispersion with momentum transfer (qq) along the cc^{*}-axis, has been observed for the first time by high-resolution non-resonant inelastic x-ray scattering (NIXS). Time-dependent density-functional theory calculations show that the physics underlying the NIXS data is strong coupling between single-particle and collective degrees of freedom, mediated by large crystal local-field effects. As a result, the small-qq collective mode residing in the single-particle excitation gap of the B π\pi bands reappears periodically in higher Brillouin zones. The NIXS data thus embody a novel signature of the layered electronic structure of MgB2_{2}.Comment: 5 pages, 4 figures, submitted to PR
    corecore