3,333 research outputs found

    Exploring wide bandgap metal oxides for perovskite solar cells

    Get PDF
    The heterojunction formed when wide bandgap oxides come into contact with perovskite solar cells is essential for high efficiency as it minimizes charge leakage along with charge separation and charge transfer. Therefore, the electrical and optical properties of wide bandgap oxides, including the bandgap, charge mobility, and energy level, directly determine the efficiency of perovskite solar cells. In addition, the surface properties of the wide bandgap oxide act as an important factor that determines the efficiency through the wettability and penetration of the precursor solution during perovskite layer deposition and long-term stability through the intimate interfacial bonding with the perovskite. Although a great variety of wide bandgap oxides are known, the number that can be used for perovskite solar cells is considerably reduced in view of the limitations that the light absorber (here, perovskite) for solar cells is fixed, and the oxides must be uniformly coated at low temperature onto the substrate. Herein, a review of the results from several broad bandgap oxides used in perovskite solar cells is presented, and a direction for discovering new photoelectrodes is proposed

    Soil-Structure Interaction on the Response of Jacket Type Offshore Wind Turbine

    Get PDF
    Jacket structures are still at the early stage of their development for use in the offshore wind industry. The aim of this paper is to investigate the effect of the soil-structure interaction on the response of an offshore wind turbine with a jacket-type foundation. For this purpose, two different models of flexible foundation-the p-y model and the p-y model considering pile groups effect-are employed to compare the dynamic responses with the fixed-base model. The modal analysis and the coupled dynamic analysis are carried out under deterministic and stochastic conditions. The influence of the soil-structure interaction on the response of the jacket foundation predicts that the flexible foundation model is necessary to estimate the loads of the offshore wind turbine structure well. It is suggested that during fatigue analysis the pile group effect should be considered for the jacket foundation.None1174Ysciescopu

    Flow of red blood cells suspensions through hyperbolic microcontractions

    Get PDF
    The present study uses a hyperbolic microchannel with a low aspect ratio (AR) to investigate how the red blood cells (RBCs) deform under conditions of both extensional and shear induced flows. The deformability is presented by the degree of the deformation index (DI) of the flowing RBCs throughout the microchannel at its centerline. A suitable image analysis technique is used for semi-automatic measurements of average DIs, velocity and strain rate of the RBCs travelling in the regions of interest. The results reveal a strong deformation of RBCs under both extensional and shear stress dominated flow conditions

    Symmetry energy of dense matter in holographic QCD

    Full text link
    We study the nuclear symmetry energy of dense matter using holographic QCD. To this end, we consider two flavor branes with equal quark masses in a D4/D6/D6 model. We find that at all densities the symmetry energy monotonically increases. At small densities, it exhibits a power law behavior with the density, Esymρ1/2E_{\rm sym} \sim \rho^{1/2}.Comment: 9 pages, 3 figure

    Early Outcomes of MDR-TB Treatment in a High HIV-Prevalence Setting in Southern Africa

    Get PDF
    BACKGROUND: Little is known about treatment of multidrug-resistant tuberculosis (MDR-TB) in high HIV-prevalence settings such as sub-Saharan Africa. METHODOLOGY/PRINCIPAL FINDINGS: We did a retrospective analysis of early outcomes of the first cohort of patients registered in the Lesotho national MDR-TB program between July 21, 2007 and April 21, 2008. Seventy-six patients were included for analysis. Patient follow-up ended when an outcome was recorded, or on October 21, 2008 for those still on treatment. Fifty-six patients (74%) were infected with HIV; the median CD4 cell count was 184 cells/microl (range 5-824 cells/microl). By the end of the follow-up period, study patients had been followed for a median of 252 days (range 12-451 days). Twenty-two patients (29%) had died, and 52 patients (68%) were alive and in treatment. In patients who did not die, culture conversion was documented in 52/54 patients (96%). One patient had defaulted, and one patient had transferred out. Death occurred after a median of 66 days in treatment (range 12-374 days). CONCLUSIONS/SIGNIFICANCE: In a region where clinicians and program managers are increasingly confronted by drug-resistant tuberculosis, this report provides sobering evidence of the difficulty of MDR-TB treatment in high HIV-prevalence settings. In Lesotho, an innovative community-based treatment model that involved social and nutritional support, twice-daily directly observed treatment and early empiric use of second-line TB drugs was successful in reducing mortality of MDR-TB patients. Further research is urgently needed to improve MDR-TB treatment outcomes in high HIV-prevalence settings

    Rationing tests for drug-resistant tuberculosis - who are we prepared to miss?

    Get PDF
    BACKGROUND: Early identification of patients with drug-resistant tuberculosis (DR-TB) increases the likelihood of treatment success and interrupts transmission. Resource-constrained settings use risk profiling to ration the use of drug susceptibility testing (DST). Nevertheless, no studies have yet quantified how many patients with DR-TB this strategy will miss. METHODS: A total of 1,545 subjects, who presented to Lima health centres with possible TB symptoms, completed a clinic-epidemiological questionnaire and provided sputum samples for TB culture and DST. The proportion of drug resistance in this population was calculated and the data was analysed to demonstrate the effect of rationing tests to patients with multidrug-resistant TB (MDR-TB) risk factors on the number of tests needed and corresponding proportion of missed patients with DR-TB. RESULTS: Overall, 147/1,545 (9.5%) subjects had culture-positive TB, of which 32 (21.8%) had DR-TB (MDR, 13.6%; isoniazid mono-resistant, 7.5%; rifampicin mono-resistant, 0.7%). A total of 553 subjects (35.8%) reported one or more MDR-TB risk factors; of these, 506 (91.5%; 95% CI, 88.9-93.7%) did not have TB, 32/553 (5.8%; 95% CI, 3.4-8.1%) had drug-susceptible TB, and only 15/553 (2.7%; 95% CI, 1.5-4.4%) had DR-TB. Rationing DST to those with an MDR-TB risk factor would have missed more than half of the DR-TB population (17/32, 53.2%; 95% CI, 34.7-70.9). CONCLUSIONS: Rationing DST based on known MDR-TB risk factors misses an unacceptable proportion of patients with drug-resistance in settings with ongoing DR-TB transmission. Investment in diagnostic services to allow universal DST for people with presumptive TB should be a high priority

    Observation of a pairing pseudogap in a two-dimensional Fermi gas

    Full text link
    Pairing of fermions is ubiquitous in nature and it is responsible for a large variety of fascinating phenomena like superconductivity, superfluidity of 3^3He, the anomalous rotation of neutron stars, and the BEC-BCS crossover in strongly interacting Fermi gases. When confined to two dimensions, interacting many-body systems bear even more subtle effects, many of which lack understanding at a fundamental level. Most striking is the, yet unexplained, effect of high-temperature superconductivity in cuprates, which is intimately related to the two-dimensional geometry of the crystal structure. In particular, the questions how many-body pairing is established at high temperature and whether it precedes superconductivity are crucial to be answered. Here, we report on the observation of pairing in a harmonically trapped two-dimensional atomic Fermi gas in the regime of strong coupling. We perform momentum-resolved photoemission spectroscopy, analogous to ARPES in the solid state, to measure the spectral function of the gas and we detect a many-body pairing gap above the superfluid transition temperature. Our observations mark a significant step in the emulation of layered two-dimensional strongly correlated superconductors using ultracold atomic gases

    Semiclassical Analysis of M2-brane in AdS_4 x S^7 / Z_k

    Full text link
    We start from the classical action describing a single M2-brane on AdS_4 x S^7/ Z_k and consider semiclassical fluctuaitions around a static, 1/2 BPS configuration whose shape is AdS_2 x S^1. The internal manifold S^7/ Z_k is described as a U(1) fibration over CP^3 and the static configuration is wrapped on the U(1) fiber. Then the configuration is reduced to an AdS_2 world-sheet of type IIA string on AdS_4 x CP^3 through the Kaluza-Klein reduction on the S^1. It is shown that the fluctuations form an infinite set of N=1 supermultiplets on AdS_2, for k=1,2. The set is invariant under SO(8) which may be consistent with N=8 supersymmetry on AdS_2. We discuss the behavior of the fluctuations around the boundary of AdS_2 and its relation to deformations of Wilson loop operator.Comment: 27 pages, v2: references added, v3: major revision including the clarification of k=2 case, references added, version to appear in JHE
    corecore