828 research outputs found

    抗腫瘍性天然薬物資源としての Ophiocordyceps gracilioides の同定

    Get PDF
    富山大学・富医薬博甲第376号・SHIN MIN-KYOUNG・2021/09/28富山大

    MAP1981c, a Putative Nucleic Acid-Binding Protein, Produced by Mycobacterium avium subsp. paratuberculosis, Induces Maturation of Dendritic Cells and Th1-Polarization

    Get PDF
    Mycobacterium avium subsp. paratuberculosis (MAP) is the causative pathogen of chronic granulomatous enteropathy (Johne's disease) in animals, and has been focused on its association with various autoimmune diseases in humans, including Crohn's disease. The discovery of novel mycobacterial antigens and exploring their role in host immunity can contribute to the advancement of effective defense strategies including vaccines and diagnostic tools. In a preliminary study, we identified cellular extract proteins of MAP that strongly react with the blood of patients with Crohn's disease. In particular, MAP1981c, a putative nucleic acid-binding protein, showed high expression levels and strong reactivity to IgG and IgM in the sera of patients. Here, we investigated the immunological features of MAP1981c and focused on its interaction with dendritic cells (DCs), confirming its immunomodulatory ability. MAP1981c was shown to recognize Toll-like receptor (TLR) 4, and induce DC maturation and activation by increasing the expression of co-stimulatory (CD80 and CD86) and MHC class I/II molecules and the secretion of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) in DCs. This DC activation by MAP1981c was mediated by downstream signaling of TLR4 via MyD88- and TRIF-, MAP kinase-, and NF-κB-dependent signaling pathways. In addition, MAP1981c-treated DCs activated naïve T cells and induced the differentiation of CD4+ and CD8+ T cells to express T-bet, IFN-γ, and/or IL-2, but not GATA-3 and IL-4, thus indicating that MAP1981c contributes to Th1-type immune responses both in vitro and in vivo. Taken together, these results suggest that MAP1981c is a novel immunocompetent antigen that induces DC maturation and a Th1-biased response upon DC activation, suggesting that MAP1981c can be an effective vaccine and diagnostic target

    Meteorin regulates mesendoderm development by enhancing nodal expression

    Get PDF
    During gastrulation, distinct lineage specification into three germ layers, the mesoderm, endoderm and ectoderm, occurs through an elaborate harmony between signaling molecules along the embryonic proximo-distal and anterior-posterior axes, and Nodal signaling plays a key role in the early embryonic development governing embryonic axis formation, mesoderm and endoderm specification, and left-right asymmetry determination. However, the mechanism by which Nodal expression is regulated is largely unknown. Here, we show that Meteorin regulates Nodal expression and is required for mesendoderm development. It is highly expressed in the inner cell mass of blastocysts and further in the epiblast and extra-embryonic ectoderm during gastrulation. Genetic ablation of the Meteorin gene resulted in early embryonic lethality, presumably due to impaired lineage allocation and subsequent cell accumulation. Embryoid body culture using Meteorin-null embryonic stem (ES) cells showed reduced Nodal expression and concomitant impairment of mesendoderm specification. Meteorin-null embryos displayed reduced levels of Nodal transcripts before the gastrulation stage, and impaired expression of Goosecoid, a definitive endoderm marker, during gastrulation, while the proximo-distal and anterior-posterior axes and primitive streak formation were preserved. Our results show that Meteorin is a novel regulator of Nodal transcription and is required to maintain sufficient Nodal levels for endoderm formation, thereby providing new insights in the regulation of mesendoderm allocation.open1113sciescopu

    The expression and cellular localization of phospholipase D isozymes in the developing mouse testis

    Get PDF
    To examine the involvement of phospholipase D (PLD) isozymes in postnatal testis development, the expression of PLD1 and PLD2 was examined in the mouse testis at postnatal weeks 1, 2, 4, and 8 using Western blot analysis and immunohistochemistry. The expression of both PLD1 and PLD2 increased gradually with development from postnatal week 1 to 8. Immunohistochemically, PLD immunoreactivity was detected in some germ cells in the testis and interstitial Leydig cells at postnatal week 1. PLD was mainly detected in the spermatocytes and residual bodies of spermatids in the testis after 8 weeks after birth. The intense immunostaining of PLD in Leydig cells remained unchanged by postnatal week 8. These findings suggest that PLD isozymes are involved in the spermatogenesis of the mouse testis

    Recombinant TAT–gelonin fusion toxin: Synthesis and characterization of heparin/protamine‐regulated cell transduction

    Full text link
    Protein toxins, such as gelonin, are highly desirable anti‐cancer drug candidates due to their unparalleled potency and repetitive reaction mechanism in inhibiting protein translation. However, for its potential application in cancer therapy, there remains the cell membrane barrier that allows permeation of only small molecules, which must be overcome. To address this challenge, we conjugated gelonin with a protein transduction domain (PTD), the TAT peptide, via genetic recombination. The chimeric TAT–gelonin fusion protein (TAT‐Gel) retained equipotent N ‐glycosidase activity yet displayed greater cell uptake than unmodified recombinant gelonin (rGel), thereby yielding a significantly augmented cytotoxic activity. Remarkably, TAT‐Gel displayed up to 177‐fold lower IC 50 (avg. 54.3 n M ) than rGel (avg. IC 50 : 3640 n M ) in tested cell lines. This enhanced cytotoxicity, however, also raised potential toxicity concerns due to the non‐selectivity of PTD in its mediated cell transduction. To solve this problem, we investigated the plausibility of regulating the cell transduction of TAT‐Gel via a reversible masking using heparin and protamine. Here, we demonstrated, both in vitro and in vivo , that the cell transduction of TAT‐Gel can be completely curbed with heparin and yet this heparin block can be efficiently reversed by the addition of protamine. This reversible tight regulation of the cell transduction of TAT‐Gel by heparin and protamine sheds light of possible application of TAT‐Gel in achieving a highly effective yet safe drug therapy for the treatment of tumors. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 409–419, 2015.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109572/1/jbma35188.pd

    Relationship between the Korean Version of the Sniffin' Stick Test and the T&T Olfactometer in the Korean Population

    Get PDF
    ObjectivesThe Korean version of the Sniffin' stick (KVSS) test is widely used in Korea to evaluate olfactory function. However, its validity and reliability have not been studied well. In this study, the authors administered the KVSS and the T%T olfactometer test to evaluate olfactory function and to establish relationships between these two test measures.MethodsTwo hundred and eleven patients participated in this prospective randomized study. One hundred and nine patients with no olfactory symptoms and 102 patients with decreased olfaction participated. All participants were underwent KVSS II and T&T olfactometer testing.ResultsThe mean recognition threshold of the T&T olfactometer was -1.8±0.9 for patients with normal olfaction and 4.0±2.6 for patients with decreased olfaction. The mean Threshold-Discrimination-Identification score of the KVSS II was 30.0±3.8 for patients with normal olfaction and 15.9±7.1 for patients with decreased olfaction. Correlation coefficient between the two tests was significantly high (rs=-0.725, P<0.01).ConclusionThe KVSS and T&T olfactometry test are both reliable tests of olfactory function and their results are well correlated with each other
    corecore