607 research outputs found

    Development of Micro-Heaters with Optimized Temperature Compensation Design for Gas Sensors

    Get PDF
    One of the key components of a chemical gas sensor is a MEMS micro-heater. Micro-heaters are used in both semiconductor gas sensors and NDIR gas sensors; however they each require different heat dissipation characteristics. For the semiconductor gas sensors, a uniform temperature is required over a wide area of the heater. On the other hand, for the NDIR gas sensor, the micro-heater needs high levels of infrared radiation in order to increase sensitivity. In this study, a novel design of a poly-Si micro-heater is proposed to improve the uniformity of heat dissipation on the heating plate. Temperature uniformity of the micro-heater is achieved by compensating for the variation in power consumption around the perimeter of the heater. With the power compensated design, the uniform heating area is increased by 2.5 times and the average temperature goes up by 40 °C. Therefore, this power compensated micro-heater design is suitable for a semiconductor gas sensor. Meanwhile, the poly-Si micro-heater without compensation shows a higher level of infrared radiation under equal power consumption conditions. This indicates that the micro-heater without compensation is more suitable for a NDIR gas sensor. Furthermore, the micro-heater shows a short response time of less than 20ms, indicating a very high efficiency of pulse driving

    Quantitative measurements of C-reactive protein using silicon nanowire arrays

    Get PDF
    A silicon nanowire-based sensor for biological application showed highly desirable electrical responses to either pH changes or receptor-ligand interactions such as protein disease markers, viruses, and DNA hybridization. Furthermore, because the silicon nanowire can display results in real-time, it may possess superior characteristics for biosensing than those demonstrated in previously studied methods. However, despite its promising potential and advantages, certain process-related limitations of the device, due to its size and material characteristics, need to be addressed. In this article, we suggest possible solutions. We fabricated silicon nanowire using a top-down and low cost micromachining method, and evaluate the sensing of molecules after transfer and surface modifications. Our newly designed method can be used to attach highly ordered nanowires to various substrates, to form a nanowire array device, which needs to follow a series of repetitive steps in conventional fabrication technology based on a vapor-liquid-solid (VLS) method. For evaluation, we demonstrated that our newly fabricated silicon nanowire arrays could detect pH changes as well as streptavidin-biotin binding events. As well as the initial proof-of-principle studies, C-reactive protein binding was measured: electrical signals were changed in a linear fashion with the concentration (1 fM to 1 nM) in PBS containing 1.37 mM of salts. Finally, to address the effects of Debye length, silicon nanowires coupled with antigen proteins underwent electrical signal changes as the salt concentration changed

    Attributable fraction of tobacco smoking on cancer using population-based nationwide cancer incidence and mortality data in Korea

    Get PDF
    Smoking is by far the most important cause of cancer that can be modified at the individual level. Cancer incidence and mortality rates in Korea are the highest among all Asian countries, and smoking prevalence in Korean men is one of the highest in developed countries. The purpose of the current study was to perform a systematic review and provide an evidence-based assessment of the burden of tobacco smoking-related cancers in the Korean population. Sex- and cancer-specific population-attributable fractions (PAF) were estimated using the prevalence of ever-smoking and second-hand smoking in 1989 among Korean adults, respectively, and the relative risks were estimated from the meta-analysis of studies performed in the Korean population for ever-smoking and in the Asian population for passive smoking. National cancer incidence data from the Korea Central Cancer Registry and national cancer mortality data from Statistics Korea for the year 2009 were used to estimate the cancer cases and deaths attributable to tobacco smoking. Tobacco smoking was responsible for 20,239 (20.9%) cancer incident cases and 14,377 (32.9%) cancer deaths among adult men and 1,930 (2.1%) cancer incident cases and 1,351 (5.2%) cancer deaths among adult women in 2009 in Korea. In men, 71% of lung cancer deaths, 55%-72% of upper aerodigestive tract (oral cavity, pharynx, esophagus and larynx) cancer deaths, 23% of liver, 32% of stomach, 27% of pancreas, 7% of kidney and 45% of bladder cancer deaths were attributable to tobacco smoking. In women the proportion of ever-smoking-attributable lung cancer was 8.1%, while that attributable to second-hand smoking among non-smoking women was 20.5%. Approximately one in three cancer deaths would be potentially preventable through appropriate control of tobacco smoking in Korean men at the population level and individual level. For Korean women, more lung cancer cases and deaths were attributable to second-hand than ever-smoking. Effective control programs against tobacco smoking should be further developed and implemented in Korea to reduce the smoking-related cancer burden

    The effects of different pilot-drilling methods on the mechanical stability of a mini-implant system at placement and removal: a preliminary study

    Get PDF
    Objective: To investigate the effects of different pilot-drilling methods on the biomechanical stability of self-tapping mini-implant systems at the time of placement in and removal from artificial bone blocks. Methods: Two types of artificial bone blocks (2-mm and 4-mm, 102-pounds per cubic foot [102-PCF] polyurethane foam layered over 100-mm, 40-PCF polyurethane foam) were custom-fabricated. Eight mini-implants were placed using the conventional motor-driven pilot-drilling method and another 8 mini-implants were placed using a novel manual pilot-drilling method (using a manual drill) within each of the 2-mm and 4-mm layered blocks. The maximum torque values at insertion and removal of the mini-implants were measured, and the total energy was calculated. The data were statistically analyzed using linear regression analysis. Results: The maximum insertion torque was similar regardless of block thickness or pilot-drilling method. Regardless of the pilot-drilling method, the maximum removal torque for the 4-mm block was statistically higher than that for the 2-mm block. For a given block, the total energy at both insertion and removal of the mini-implant for the manual pilot-drilling method were statistically higher than those for the motor-driven pilot-drilling method. Further, the total energies at removal for the 2-mm block was higher than that for the 4-mm block, but the energies at insertion were not influenced by the type of bone blocks. Conclusions: During the insertion and removal of mini-implants in artificial bone blocks, the effect of the manual pilot-drilling method on energy usage was similar to that of the conventional, motor-driven pilot-drilling method. (Korean J Orthod 2011;41(5):354-360)Supported by a grant from Kyung Hee University in 2010 (KHU-20100696).

    Strong ferromagnetism in Pt-coated ZnCoO: The role of interstitial hydrogen

    Get PDF
    We observed strong ferromagnetism in ZnCoO as a result of high concentration hydrogen absorption. Coating ZnCoO with Pt layer, and ensuing hydrogen treatment with a high isostatic pressure resulted in a highly increased carrier concentration of 10(21)/cm(3). This hydrogen treatment induced a strong ferromagnetism at low temperature that turned to superparamagnetism at about 140 K. We performed density functional method computations and found that the interstitial H dopants promote the ferromagnetic ordering between scattered Co dopants. On the other hand, interstitial hydrogen can decrease the magnetic exchange energy of Co-H-Co complexes, leading to a reduction in the blocking temperature.open7

    Caudal analgesia reduces the sevoflurane requirement for LMA removal in anesthetized children

    Get PDF
    BACKGROUND: An anesthetic state can reduce adverse airway reaction during laryngeal mask airway (LMA) removal in children. However, the anesthetic state has risks of upper airway obstruction or delayed emergence; so possibly less anesthetic depth is advisable. Caudal analgesia reduces the requirement of anesthetic agents for sedation or anesthesia; it is expected to reduce the sevoflurane requirement for LMA removal. Therefore, we determined the EC(50) of sevoflurane for LMA removal with caudal analgesia and compared that to the EC(50) without caudal analgesia. METHODS: Forty-three unpremedicated children aged 1 to 6 yr were enrolled. They were allocated to receive or not to receive caudal block according to their parents' consent. General anesthesia were induced and maintained with sevoflurane and oxygen in air. EC(50) of sevoflurane for a smooth LMA removal with and without caudal analgesia were estimated by the Dixon up-and-down method. The LMA was removed when predetermined end-tidal sevoflurane concentration was achieved, and the sevoflurane concentration of a subsequent patient was determined by the success or failure of the previous patient with 0.2% as the step size; success was defined by the absence of an adverse airway reaction during and after LMA removal. EC(50) of sevoflurane with caudal block, and that without caudal block, were compared by a rank-sum test. RESULTS: The EC(50) of sevoflurane to achieve successful LMA removal in children with caudal block was 1.47%; 1.81% without caudal block. The EC(50) were significantly different between the two groups (P < 0.001). CONCLUSIONS: Caudal analgesia significantly reduced the sevoflurane concentration for a smooth LMA removal in anesthetized childrenope
    corecore