42 research outputs found

    Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia

    Get PDF
    We proposed pattern classification based on principal components of cortical thickness between schizophrenic patients and healthy controls, which was trained using a leave-one-out cross-validation. The cortical thickness was measured by calculating the Euclidean distance between linked vertices on the inner and outer cortical surfaces. Principal component analysis was applied to each lobe for practical computational issues and stability of principal components. And, discriminative patterns derived at every vertex in the original feature space with respect to support vector machine were analyzed with definitive findings of brain abnormalities in schizophrenia for establishing practical confidence. It was simulated with 50 randomly selected validation set for the generalization and the average accuracy of classification was reported. This study showed that some principal components might be more useful than others for classification, but not necessarily matching the ordering of the variance amounts they explained. In particular, 40-70 principal components rearranged by a simple two-sample t-test which ranked the effectiveness of features were used for the best mean accuracy of simulated classification (frontal: (left(%)|right(%))=91.07|88.80, parietal: 91.40|91.53, temporal: 93.60|91.47, occipital: 88.80|91.60). And, discriminative power appeared more spatially diffused bilaterally in the several regions, especially precentral, postcentral, superior frontal and temporal, cingulate and parahippocampal gyri. Since our results of discriminative patterns derived from classifier were consistent with a previous morphological analysis of schizophrenia, it can be said that the cortical thickness is a reliable feature for pattern classification and the potential benefits of such diagnostic tools are enhanced by our finding

    Support for UNRWA's survival

    Get PDF
    The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA) provides life-saving humanitarian aid for 5·4 million Palestine refugees now entering their eighth decade of statelessness and conflict. About a third of Palestine refugees still live in 58 recognised camps. UNRWA operates 702 schools and 144 health centres, some of which are affected by the ongoing humanitarian disasters in Syria and the Gaza Strip. It has dramatically reduced the prevalence of infectious diseases, mortality, and illiteracy. Its social services include rebuilding infrastructure and homes that have been destroyed by conflict and providing cash assistance and micro-finance loans for Palestinians whose rights are curtailed and who are denied the right of return to their homeland

    Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications

    No full text
    Recently, graphene has been extensively researched in fundamental science and engineering fields and has been developed for various electronic applications in emerging technologies owing to its outstanding material properties, including superior electronic, thermal, optical and mechanical properties. Thus, graphene has enabled substantial progress in the development of the current electronic systems. Here, we introduce the most important electronic and thermal properties of graphene, including its high conductivity, quantum Hall effect, Dirac fermions, high Seebeck coefficient and thermoelectric effects. We also present up-to-date graphene-based applications: optical devices, electronic and thermal sensors, and energy management systems. These applications pave the way for advanced biomedical engineering, reliable human therapy, and environmental protection. In this review, we show that the development of graphene suggests substantial improvements in current electronic technologies and applications in healthcare systems

    A copper-mediated cross-coupling approach for the synthesis of 3-heteroaryl quinolone and related analogues

    No full text
    An efficient and practical method for the direct cross-coupling between quinolones and a range of azoles was developed via copper-mediated C-H functionalization. This synthetic strategy provides a convenient access to a variety of C3-heteroaryl quinolones, quinolinone, nalidixic acid, uracil, pyridone and chromone derivatives, which are prominent structural motifs in many biologically active compounds.1991sciescopu

    Preliminary design of a production automation framework for a pyroprocessing facility

    No full text
    Pyroprocessing technology has been regarded as a promising solution for recycling spent fuel in nuclear power plants. The Korea Atomic Energy Research Institute has been studying the current status of equipment and facilities for pyroprocessing and found that existing facilities are manually operated; therefore, their applications have been limited to laboratory scale because of low productivity and safety concerns. To extend the pyroprocessing technology to a commercial scale, the facility, including all the processing equipment and the material-handling devices, should be enhanced in view of automation. In an automated pyroprocessing facility, a supervised control system is needed to handle and manage material flow and associated operations. This article provides a preliminary design of the supervising system for pyroprocessing. In particular, a manufacturing execution system intended for an automated pyroprocessing facility, named Pyroprocessing Execution System, is proposed, by which the overall production process is automated via systematic collaboration with a planning system and a control system. Moreover, a simulation-based prototype system is presented to illustrate the operability of the proposed Pyroprocessing Execution System, and a simulation study to demonstrate the interoperability of the material-handling equipment with processing equipment is also provided. (C) 2018 Korean Nuclear Society, Published by Elsevier Korea LLC.Nuclear Research & Development Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [2015M2A8A5025906]Open Access Journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Correlation of Microstructure, Chip-Forming Properties, and Dynamic Torsional Properties in Free-Machining Steels

    No full text
    Four free-machining steels were fabricated by varying volume fractions of MnS and soft metal additives of Pb and Bi, and their microstructures, tensile properties, chip-forming properties, and dynamic torsional properties were analyzed. Machining and dynamic torsional tests were conducted on the four steels to investigate chip-forming and dynamic torsional properties, respectively. In the Pb-S- and Bi-S-based steels, the chip thickness and ridge area of the 1(st) chip obtained from the machining test were smaller than in the S-based steels and were not changed much after repeated machining processes. These chip-forming properties were closely related with dynamic torsional properties. Dynamic maximum shear strains of the Pb-S- and Bi-S-based steels were higher than those of the S-based steels, while dynamic maximum shear stresses were lower, thereby leading to the relatively homogeneous dynamic shear deformation and to the better chip-forming properties and machinability. (C) The Minerals, Metals & Materials Society and ASM International 2013open1111sciescopu

    Zn2+-Imidazole Coordination Crosslinks for Elastic Polymeric Binders in High-Capacity Silicon Electrodes

    No full text
    Recent research has built a consensus that the binder plays a key role in the performance of high-capacity silicon anodes in lithium-ion batteries. These anodes necessitate the use of a binder to maintain the electrode integrity during the immense volume change of silicon during cycling. Here, Zn2+-imidazole coordination crosslinks that are formed to carboxymethyl cellulose backbones in situ during electrode fabrication are reported. The recoverable nature of Zn2+-imidazole coordination bonds and the flexibility of the poly(ethylene glycol) chains are jointly responsible for the high elasticity of the binder network. The high elasticity tightens interparticle contacts and sustains the electrode integrity, both of which are beneficial for long-term cyclability. These electrodes, with their commercial levels of areal capacities, exhibit superior cycle life in full-cells paired with LiNi0.8Co0.15Al0.05O2 cathodes. The present study underlines the importance of highly reversible metal ion-ligand coordination chemistries for binders intended for high capacity alloying-based electrodes.

    Formation Mechanisms of Cracks Formed during Hot Rolling of Free-machining Steel Billets

    No full text
    In this study, cracks formed in the edge side of Bi-S-based free-machining steel billets during hot rolling were analyzed in detail, and their formation mechanisms were clarified in relation with microstructure. Particular emphasis was placed on roles of bands of pearlites or C- and Mn-rich regions and complex iron oxides present in the edge side. Pearlite bands in the cracked region were considerably bent to the surface, while those in the noncracked region were parallel to the surface. This was because the alignment direction of pearlite bands was irregularly deviated up to 45 deg from the normal direction parallel to the surface, while the billet was rolled and rotated at 90 deg in the same direction between rolling passes. On the edge side, where pearlite bands were bent, iron oxides intruded deeply into the interior along pearlite bands, which worked as stress concentration sites during hot rolling and, consequently, main causes of the crack initiation in the rolled billet. On the surface of the wire rod rolled from the cracked billet, a few scabs were found when some protrusions were folded during hot rolling. In order to prevent the cracking in billets and scab formation in wire rods, (1) the increase of rolling passes and the decrease of reduction ratio for homogeneous rolling of billets and (2) the reduction in sulfur content for minimizing the formation and intrusion of complex iron oxides were suggested.X113sciescopu
    corecore