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We proposed pattern classification based on principal components of
cortical thickness between schizophrenic patients and healthy controls,
which was trained using a leave-one-out cross-validation. The cortical
thickness was measured by calculating the Euclidean distance between
linked vertices on the inner and outer cortical surfaces. Principal
component analysis was applied to each lobe for practical computa-
tional issues and stability of principal components. And, discriminative
patterns derived at every vertex in the original feature space with
respect to support vector machine were analyzed with definitive
findings of brain abnormalities in schizophrenia for establishing
practical confidence. It was simulated with 50 randomly selected
validation set for the generalization and the average accuracy of
classification was reported. This study showed that some principal
components might be more useful than others for classification, but not
necessarily matching the ordering of the variance amounts they
explained. In particular, 40-70 principal components rearranged by a
simple two-sample 7-test which ranked the effectiveness of features
were used for the best mean accuracy of simulated classification
(frontal: (left(%)|right(%))=91.07|88.80, parietal: 91.40/91.53, tem-
poral: 93.60|91.47, occipital: 88.80|91.60). And, discriminative power
appeared more spatially diffused bilaterally in the several regions,
especially precentral, postcentral, superior frontal and temporal,
cingulate and parahippocampal gyri. Since our results of discrimina-
tive patterns derived from classifier were consistent with a previous
morphological analysis of schizophrenia, it can be said that the cortical
thickness is a reliable feature for pattern classification and the potential
benefits of such diagnostic tools are enhanced by our finding.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Magnetic resonance imaging; Cortical thickness; Principal com-
ponent analysis; Support vector machine; Leave-one-out cross-validation

* Pattern classification using cortical thickness.
* Corresponding author. Fax: +82 2 2296 5943.
E-mail address: ljm@hanyang.ac.kr (J.-M. Lee).
URL: http://cna.hanyang.ac.kr (J.-M. Lee).
Available online on ScienceDirect (www.sciencedirect.com).

1053-8119/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.neuroimage.2006.11.021

Introduction

Recent advances in magnetic resonance image acquisition and
processing have allowed for the morphometric analysis of the cere-
bral cortex at a macroscopic level and have allowed an investigation
of normal and abnormal changes. Much structural magnetic
resonance imaging (MRI) of the brain in schizophrenia has indicated
subtle cortical abnormalities compared with healthy controls. Speci-
fically, gray matter (GM) deficits in superior and medial temporal
cortices have been widely reported, but there is moderate evidence
of focal GM volume reductions in frontal, parietal, and occipital
neocortices, and subcortical abnormalities (Shenton et al., 2001).
Although voxel-based morphometry (VBM), which involves a
voxel-wise comparison of local GM concentration, is the most
widely used approach, it might in part reflect differences in the
surrounding tissue and might be influenced by the sulcal widening in
schizophrenia (Ashburner and Friston, 2000; Narr et al., 2005a;
Shenton et al., 2001). Although GM concentration reflects the pro-
portion of GM within cortical mantle with respect to other tissue
types, and cortical thickness represents the distance across the cortex
according to some geometric definition, it was reported that these
measures are highly correlated, but none of several potential defects
in GM concentration were associated with the cortical thickness
(Narr et al., 2005a). Therefore, it can be said that measuring cortical
thickness provides a closer approximation to the underlying anato-
mical reality and a direct quantitative index of cortical morphology.

Several postmortem studies have assessed cortical thickness in
schizophrenia, but they are limited by labor-intensive procedures,
making it impractical to measure cellular density and thickness in
all cortical regions (Selemon, 2004; Selemon et al., 1995).
However, in vivo data with the latest computational neuroimage
analysis methods may allow differences in cortical thickness to be
estimated from the nodes of a 3D polygonal mesh rather than from
a 3D voxel grid. The surface-based approach has the following
additional advantages over image- or voxel-based approaches.
First, it can be applied in more general situations where a surface is
not embedded in an image, but is defined in another way such as
segmented boundaries or triangulations. Second, unless the appea-
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rance inside the object is also the focus of interest, it may be more
appropriate for shape analysis, as the boundary or surface of a
volumetric object actually defines the shape. Finally, some noise
generated from resampling in the voxel-based analysis can be
avoided. Few prior surface-based approaches have examined
cortical thickness in schizophrenia (Kuperberg et al., 2003; Narr
et al, 2005a,b; White et al., 2003; Wiegand et al., 2004).
Kuperberg et al. (2003) assessed thinning across the entire cortex
and showed widespread significant thinning that particularly
affected the prefrontal and temporal cortices in chronic schizo-
phrenia. White et al. (2003) reported significant cortical thinning in
cortex underlying the sulci in frontal, temporal and parietal regions
and beneath the gyri in the temporal lobe in patients with
childhood and adolescent onset schizophrenia. Another study
examining cortical thickness averaged across the entire prefrontal
cortex failed to detect significant cortical thinning in first-episode
schizophrenia (Wiegand et al., 2004). Narr et al. (2005a) revealed
significant regional GM thinning in the frontal, temporal and
parietal heteromodal association cortices bilaterally in first-episode
schizophrenia. Therefore, it could be expected that these findings
related to differences of cortical thickness as a quantitative index of
cortical morphology contribute affirmatively toward a categoriza-
tion between schizophrenia and healthy control.

Because schizophrenia is a large-scale disorder of neurocogni-
tive networks rather than confined to specific regions, and
structural changes are present in multiple brain regions, it can be
anatomically characterized by abnormality at a supra-regional level
of brain organization (Burns et al., 2003; Lawrie and Abukmeil,
1998; Shenton et al., 2001; Wright et al., 1999b). Based on
previous findings, Davatzikos et al. (2005) performed whole-brain
analysis of structural differences between schizophrenic patients
and healthy controls, and applied a high-dimensional nonlinear
pattern classification technique to quantify the degree of separation
between patients and controls. They were able to classify new
individuals as schizophrenic or healthy with 81% accuracy and
suggested the potential utility of MRI as a diagnostic aid. Principal
component analysis (PCA) is a multivariate method identifying
correlation among a set of measurements or variables so that it
obtains a set of basis vectors whose linear combination can
optimally represent the measured data. And it may also be used to
obtain a low-dimensional representation of the measurements
themselves. Even if the results may be unstable where the number
of subjects is much smaller than the number of variables,
dimensionality reduction of PCA is very effective in classification
because a higher number of features will easily lead the classifier
into the problem of overfitting. Initially, Olson and Miller (1958)
proposed that anatomical structures could be recomposed into
supra-regional systems by PCA of the covariance or correlations
between regional elements (Wright et al., 1999b). Since then,
regional elements of supra-regional systems defined by PCA have
often been found to share developmental influences or to have a
common function (Cheverud, 1982). Narr et al. (2005a) used PCA
to reduce cortical thickness measures into principal components,
but they examined global effect of cortical GM. Although several
shape classification studies have been conducted for discovering
hippocampal shape abnormality in schizophrenia, to our knowl-
edge this is the first classification study based on principal
components of cortical thickness measured at the spatially
homologous cortical surface locations in each individual.

The aim of classification is to instruct the classifier using a
training set or set of labeled examples representing different

classes, and then use the classifier to predict the class of any new
example. This constitutes the final goal of the learning stage in
many application domains, including character recognition and
text classification. In medical image analysis, however, it has
been much more useful in understanding the nature of the
differences captured by the classifier than in using it for labeling
new examples. These differences, expressed in terms of the
original images or shapes, can provide an insight into the
anatomical implications of shape differences detected by the
learning algorithm. Furthermore, it could be argued that studying
the structure of the data captured by the classifier is important in
any application, because it puts an emphasis on the nature of the
differences between the classes and can potentially help improve
the technique. Golland et al. (2005) introduced the notion of the
discriminative direction at every point in the feature space with
respect to a given classifier, which corresponds to the maximum
changes in the classifier's response while minimizing irrelevant
changes in the input. It allows to characterize shape differences
between the two classes captured by the classifier and to express
them as deformations of the original shape. Shen et al. (2004)
proposed discriminative patterns that shared a similar idea of
discriminative direction: for a linear classifier, the deformation
representing class differences could be visualized using the
normal to the separating hyperplane. In this study, we proposed
pattern classification based on principal components of cortical
thickness between schizophrenic patients and healthy controls,
and validated its accuracy using a leave-one-out cross-validation
(LOOCV) method. Discriminative patterns derived at every
vertex in the original feature space with respect to a given
classifier were analyzed with definitive findings of brain
abnormalities in schizophrenia for establishing practical con-
fidence. The purpose of this study is identification of repre-
sentative regions contributing to the classification through a
discriminative pattern. Although it is less conservative than
statistical #-test, our method would be useful to grasp the trend of
difference between healthy control and schizophrenia in cortical
thickness.

Materials and methods
Subjects

A group of right-handed schizophrenic patients was recruited
from the inpatient unit and the outpatient clinic at Seoul National
University Hospital, Seoul, Korea. Fifty-three patients (32 men, 21
women) were interviewed using a structured clinical interview
based on DSM-IV (SCID-1V) and met those criteria for
schizophrenia. The Structured Clinical Interview (SCID) was first
devised with the DSM-III-R (APA, 1987), and it was modified in
1997 to conform to the new DSM-IV system of diagnosis (First et
al., 1997). The SCID is well designed to diagnose schizophrenia,
which also separates its main diagnosis from other psychiatric
disorders since it has a form of a branching-style interview
covering most major psychiatric symptoms. It is noteworthy here
that since the introduction of SCID, almost all studies of
schizophrenia have been using it for the diagnosis of schizo-
phrenia. Exclusion criteria for patients were any lifetime history of
neurological or significant medical illnesses, and any past history
of substance abuse. Each patient's symptoms were rated on the
positive and negative syndrome scale (PANSS, Kay et al., 1987).
The normal control group was recruited from internet advertise-
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ments, and consisted of 52 healthy subjects matched with the
patient group for age, sex, handedness, and socioeconomic status
(SES). Exclusion criteria for controls were any current or lifetime
history of a DSM-IV axis I disorder. The demographic character-
istics of patients and controls are summarized in Table 1. The mean
PANSS total score of the patients was 72.26+15.38. This study
was carried out under the guidelines for the use of human subjects
established by our institutional review board. All subjects gave
written informed consent for the procedures before their participa-
tion in the study.

MR image acquisition and cortical surface extraction

MR images were acquired using a 1.5-T GE SIGNA scanner
(GE Medical Systems, Milwaukee, WI) with a 3D-SPGR T1-
weighted spoiled gradient echo pulse sequence with the following
parameters: 1.5 mm sagittal slices; echo time 5.5 ms; repetition
time 14.4 ms; number of excitations 1; rotation angle 20°; field of
view 21 x21 cm; matrix 256 X256 voxels. Images were resampled
to be isocubic and realigned so that the anterior—posterior axis of
the brain was aligned parallel to the intercommissural line and the
other two axes were aligned along the interhemispheric fissure.
The datasets were then filtered using an affine anisotropic diffusion
filtering to improve the signal-to-noise ratio, which is a scale space,
adaptive and the most widely used nonlinear technique for noise
reduction. These procedures were processed using ANALYZE 4.0
software (Mayo Foundation, USA).

The following steps were applied to these data, which have
been described in detail elsewhere (Collins et al., 1994; Kim et al.,
2005; MacDonald et al., 2000; Sled et al., 1998; Zijdenbos et al.,
2002). A fully 3D technique for inhomogeneity correction
removed a serious obstacle for automated segmentation of MRI,
which involved slowly varying the change in signal intensity over
the image caused by magnetic field inhomogeneity (Sled et al.,
1998). To account for inter-individual differences in absolute brain
size, each brain was separately transformed into a standardized
stereotaxic space and resampled on a 1 mm® voxel grid. This was
done using automatic registration software that used a 3D cross
correlation approach to match the single MRI volume with the
intensity average of 305 MRI brain volumes previously aligned in
standardized stereotaxic space (Collins et al., 1994). An artificial
neural network classifier was applied to identify GM, white matter
(WM) and cerebrospinal fluid (CSF) (Zijdenbos et al., 2002).

Table 1
Demographic characteristics of the subjects

Characteristic Schizophrenia Healthy control
(N=53) (N=52)
Mean SD*® Mean SD
Age (years) 27.80 6.00  26.44 5.35
Sex (male/female) 32/21 32/20
Subjects educational level (years) 14.37* 2.65 15.67* 2.0l
Socioeconomic status 3.04* 0.88  2.65* 0.59
Age of onset (years) 23.96 6.18 N/A
Duration of illness (years) 491 4.09
PANSS" total scores 72.40 15.70

 Standard deviation.
® Positive and negative syndrome scale.
* p<0.01.

Cortical surfaces were automatically extracted from each MR
volume using the Constrained Laplacian-based Automated Seg-
mentation with Proximities (CLASP) algorithm, which recon-
structed the inner cortical surface by deforming a spherical mesh
onto the WM/GM boundary (Kim et al., 2005; MacDonald et al.,
2000). Hemispheric cortical surface models were constructed;
these consisted of 81,920 polygons forming high-resolution
meshes of discrete triangular elements.

Measurement of cortical thickness and principal component
analysis

Because the cortical surface models were extracted from MR
volumes transformed into stereotaxic space, the inverse transfor-
mation matrix was applied to cortical surfaces for measuring
cortical thickness in native space. Inner and outer surfaces had the
same vertex number, and the correspondence between surfaces in
each vertex was defined. Thus, cortical thickness was easily
measured using the 7T, method of calculating the Euclidean
distance between linked vertices on the WM/GM boundary surface
and the GM/CSF intersection surface (Kabani et al., 2001; Lerch
and Evans, 2005; MacDonald et al., 2000). Although there are
several algorithms for measuring cortical thickness, evaluation of
their precision suggested that the 7, method is the simplest and
most precise method (Lerch and Evans, 2005). To apply PCA to
the cortical thickness of whole subjects, the thickness information
was spatially normalized using surface-based registration. Since
the cortical surface of each subject starts from a spherical polygon
model in the CLASP algorithm, the vertices are easily transformed
to the spherical model and nonlinearly registered to an average
template on the sphere. This 2D surface registration makes use of a
highly flexible deformation of a template cortex to an individual
(Robbins, 2003). It provides a geodesic distance transformation to
match crowns of gyri between subjects. This algorithm was tuned
for chosen parameter values, improving the resulting registrations.
Sulcal variability was reduced in all areas of the cortex using
optimal parameter values, which was proven by the method of
entropy measure (Robbins et al., 2004). Finally, thickness
information on each vertex of whole subject was transformed to
a template so that the correspondence between subjects at each
vertex of the cortical surface model should be assured. This
algorithm has been used very well for previous studies which
compared the thickness of the surface model between groups (Im et
al., 2006; Lerch et al., 2006). Then, diffusion smoothing, which
generalizes Gaussian kernel smoothing, with 20 mm FWHM (full
width half maximum) was used to increase the signal to noise ratio
and detect population changes very well. It was chosen as the
kernel size to maximize statistical power while still minimizing
false positives (Chung et al., 2002; Lerch et al., 2005).

The 40,962 vertices of the hemispheric cortical surface model
generated the same number of variables so that implementing PCA
over that immense number of variables was impractical because of
computer memory restrictions. In addition, the number of variables
was much larger than the number of subjects, so the results of PCA
might lack stability. The brain can be divided into four main areas:
the frontal, parietal, temporal, and occipital lobes. In this study, the
average cortical surface was generated from manually parcellated
cortical surfaces of 34 subjects, consisting of 17 healthy control
and 17 schizophrenic patients using SUMA software (available at
http://afhi.nimh.nih.gov) and used as a template for the lobar
definition of each subject (Cox and Hyde, 1997). The definition of
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the boundary between lobes (Fig. 1) was described in detail in our
previous publication (Yoon et al., 2005).

The input data for PCA become a different number of elements
according to lobes. Given a group of N subjects, the mean data X;
of lobe j can be calculated using

_ 1 &
XJ:N; X,

where Xj; is the lobe j of the ith subject.

Subsequently, PCA by lobe was applied to reduce dimen-
sionality and make classification feasible. The subscription for
lobe will be left out to simplify the equation. This involves
eigenanalysis of the covariance matrix X of the data as
follows:

where the columns of E hold eigenvectors, and the diagonal
matrix /A holds eigenvalues of X. The eigenvectors can be
ordered according to respective eigenvalues, which describe
the amount of variance dictated by each eigenvector. On the
other hand, one particular lobe of a subject can then be
written

b; = ET(X; —X)

where b; is a vector containing principal components
representing the difference between X; and X in the
eigenvector space, which can be thought of a new and more
compact representation of the data. Given a dataset of N
subjects, the first N—1 principal components are enough to
capture all the data variance. PCA can also be viewed as a
kind of feature extraction from the original data. In this study,
these principal components were used as a feature vector of
the following classifier.

Support vector machine and feature selection methods

The support vector machine (SVM) belongs to a learning
system based on recent advances in statistical learning theory
(Vapnik, 1998). We applied linear SVM using LIBSVM, which is a
library for support vector machines (Fan et al., 2005). Although we
have briefly described how to train linear classifiers with SVM, an
extensive introduction and a formal discussion of the theoretical

Fig. 1. The color-coded definition of the boundary between lobes was
mapped onto the average cortical surface. It was used as a template for the
lobar definition of each subject.

foundations of SVM can be found in the literature (Burges, 1998;
Vapnik, 1998).

Given a training set of principal components and label pairs
by, y), i=1,2, ..., N where y;E {1,—1}, the SVM requires the
solution of the following optimization problem:

| N
min- o’ w + CZ &

w,b,& pa

subject to

yi(o d(b) + f)=1 — &, £=0.

Training vectors b; are mapped into a higher (maybe infinite)
dimensional space by the function ¢. Therefore, @ is normal to
the hyperplane and |B/||w|| is the perpendicular distance from the
hyperplane to the origin. In addition, & is a non-negative slack
variable for non-separable cases and C is a parameter for
adjusting the cost of the constraint violation, i.e., the com-
promise between maximizing the margin which can be defined
as the sum of the distances from the hyperplane to the closest
positive and negative exemplars, and minimizing the number of
errors. Then SVM finds a linear separating hyperplane with the
maximal margin in this higher dimensional space. A linearly
separable SVM aims to find the separating hyperplane with the
largest margin.

Classification is performed on feature vectors after PCA and
LOOCV methodology is used for finding the best parameters of
classifier (Duda et al., 2000). As the name suggests, LOOCV
involves using a single observation from the original sample as test
data, and the remaining observations as training data. This is
reiterated such that each observation in the sample is used as the test
data. In this study, in order to keep away from any other bias,
validation set for classifier evaluation was separated from training
and test set for classifier learning. The validation set was randomly
selected from the whole subject and consisted of 15 healthy control
and 15 schizophrenic patients. The parameter of linear SVM
classifier based on each feature vector was determined in case of the
best leave-one-out accuracy from the remaining subjects as a
training and test set, and then the performance of this classifier was
evaluated using the validation set. For the generalization, it was
simulated with 50 randomly selected validation set and the average
accuracy of classification was reported. Principal components,
whose standard ordering is by the variance amounts they describe,
are generally used as features in the classification, and more
features can usually improve the performance of the classifier.
However, each additional feature supplements a parameter to the
estimated model, and incorrect estimations from the less informa-
tive features can degrade performance. This trend of decreasing
accuracy gains followed by actual losses of accuracy from
additional features is known as the Hughes phenomenon (Hughes,
1968). Therefore, it is helpful to select a subset of the most useful
features. Shen et al. (2004) reported that some principal
components are more useful than others for classification, but not
necessarily for matching the ordering of the variance amounts they
describe. A simple two-sample #-test was used on each feature to
rank the effectiveness of features. A lower P value implies a
statistically stronger group difference and therefore corresponds to
a more significant feature. Two types of feature selection schemes
were investigated in this study, which were orderings of principal
components by variance explained and P value associated with the
t-test.
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of the group difference. We only state without proof the main facts
of this method that are necessary for derivation of our results, so
that the reader is referred to the original publications for more
details (Golland et al., 2005; Shen et al., 2004).

Discriminative patterns for classification

An approach for visualizing discriminative patterns identified
by a linear classifier was provided for a comprehensible description

a1
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~*~Variance (R)
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Fig. 2. Classification results on each lobe (a) different feature selection schemes: orderings of principal components by variance explained and P value associated
with two-sample #-test; (b) mean and standard deviation for 50 randomly selected validation set. The x-axis is the number of features used for the classification

and the y-axis is the accuracy of classification.
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Applying PCA and SVM as detailed above to a shape set, a
discriminative value V; for each subject X; could be calculated as
follows:

Vi=(X; —X)"*E*o = (X; —X)"*Pp,

where Pp, is a column vector that weights the contribution of each
difference in each subject to a discriminative value. Given a vertex
k of the cortical surface model, we use Pp(k) to denote the
corresponding weights for difference of thickness. As there is no
information of direction on the shape used in this study, only an
absolute value of Pp(k) is valid. A large magnitude of Pp(k)
indicates that vertex & has discriminative power, as even small local
differences at this vertex will have a noticeable effect on the overall
classification. In a way of showing statistical group difference
implied by the classifier model, the color-coded value of Pp in
each vertex was mapped onto a mean surface to identify significant
discriminative regions. In this study, discriminative patterns were
obtained by the following procedure:

(1) PCA was applied to cortical thickness of each lobe;

(2) principal components were ordered by P value associated
with the #-test and used as features of SVM classifier;

(3) SVM using the minimum number of features needed was
applied to achieve a perfect discrimination between classes;

(4) discriminative pattern was calculated using eigenvectors
depending on selected principal components and the
corresponding normal to the separating hyperplane;

(5) discriminative pattern for each case of the simulation was
averaged vertex-by-vertex in the original space and mapped
onto a cortical surface;

(6) anatomical labels of representative regions were acquired
using the Talairach Daemon Client (version 2.0, available at
http://ric.uthscsa.edu/projects/talairachdaemon.html).

For better comprehension of discriminative patterns, spatially
normalized cortical thickness of patients and controls were
compared statistically using vertex-wise #-tests. Correction for
multiple comparisons was needed to control the false-positive rate.
The false discovery rate (FDR) controlling procedure for multiple
comparisons was reported to be effective for the analysis of
neuroimaging data (Genovese et al., 2002). We performed FDR
correction for multiple comparisons at P<0.05.

Results
Classification results using different feature selection schemes

Classification can be performed using just the first few
principal components, which account for significant amount of
data variance, based on the hypothesis that this information is
crucial for classification and the rest noisy. However, judging
from the following results, it seems not to be acceptable. Fig. 2(a)
shows the classification results on each lobe using different
feature selection schemes according to the ordering of principal
components: decreasing arrangement by the variance explained
(DAV) and increasing one by the P value associated with two-
sample #-test (IAP). Table 2 shows the best accuracy of DAV
feature selection with the number of features used for each lobe
and total variance of those features. In case of the DAV scheme,
63—77% accuracy was achieved when 8-37 principal components

Table 2
Best performance of classifier and the number of features used in the best
case

No. of DAV*® IAP®
vertices

Best No. of Best No. of
accuracy feature® accuracy feature®

Frontal L 13597 0.77 37 (99.96%) 1.00 39 (98.21%)
R 13216 0.70 18 (99.70%) 0.90 40 (95.24%)
Temporal L 6210 0.70 8 (97.27%) 0.97 53 (94.86%)
R 6242 0.67 10 (98.24%) 1.00 62 (96.86%)
Parietal L 10525 0.70 33 (99.89%) 0.97 72 (98.23%)
R 10507 0.63 9 (98.27%) 0.97 40 (93.08%)
Occipital L 3941 0.63 15 (99.76%) 0.90 46 (95.90%)
R 4270 0.67 20 (99.83%) 1.00 47 (84.65%)

The numerical value in parentheses represents the variance amounts which
the features explain.

? DAV, decreasing arrangement of features by variance explained.

® JAP, increasing arrangement of features by P value associated with
1-test.

¢ It is unnecessary to describe the best accuracy in case of the IAP.

corresponding to 97-99% of the variance were used. It suggested
that there were significant differences in cortical thickness
between schizophrenic patients and healthy controls. In spite of
features covering almost whole variance amounts, however, the
accuracy of classification was not sufficient for practical
purposes, and additional features degraded the performance of
classifier. In contrast, the result of the IAP scheme showed a
nearly perfect classification in the best case and always
outperformed the DAV for each lobe (Fig. 2(a)). In addition,
39-72 principal components corresponding to 84-98% of the
variance were used for the best performance of classifier (Table
2). Note that some components might be more useful than others
for classification, but not necessarily match the ordering of the
variance amounts they describe. It was noticeable that there was a
feature subset supporting nearly perfect classification. Fig. 2(b)
shows the average classification accuracy for 50 randomly
selected validation set using IAP scheme. On the average by
lobe, 40-70 principal components rearranged by IAP scheme
were used for the best accuracy of classification (Fig. 2(b),
frontal: (left(%)|right(%))=91.07|88.80, parietal: 91.40|91.53,
temporal: 93.60(91.47, occipital: 88.80/91.60). And, the result of
IAP feature selection always outperformed that of DAV scheme
in terms of the best case.

Discriminative patterns

Fig. 3(a) shows the color mapping of discriminative patterns
onto a mean surface to identify representative regions contribut-
ing to the classification. The regions having more discriminative
power are coded in light yellow, and the regions having less are
represented by dark red. The representative regions were defined
from whole discriminative patterns according to values over a
threshold and the size of the cluster. Their anatomical labels and
Talairach coordinates obtained by Talairach Daemon Client are
summarized in Table 3. Discriminative power appeared more
spatially diffused bilaterally in the several regions, especially
precentral, postcentral, superior frontal and temporal, cingulate
and parahippocampal gyri. Note that those regions are sig-
nificantly different in cortical thickness between schizophrenic
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Discriminative

Power 0.8

Corrected 0.05
p value

Fig. 3. The representative regions (a) and result of vertex-wise z-test (b) were displayed by color-coded mapping normalized discriminative power and corrected
P value onto the mean cortical surface. Therefore, it can be said that there are significant differences of cortical thickness in these regions which contribute

considerably to the classification.

patients and healthy controls. For the comparison with discri-
minative pattern, Fig. 3(b) shows the color-coded result of
statistical #-test for the cortical thickness of patients and controls.
There were statistically significant regions in the only left
hemisphere, which included precentral, inferior frontal and
superior temporal gyri. The spatial locations of significant re-
gions were somewhat different with the discriminative patterns:
the areas of the precentral and inferior frontal gyri were much
more prominent and the significant location of superior temporal
gyrus was a little more anterior in the t-map than the discri-
minative pattern. However, it is important to note that the voxel-
by-voxel #-test shows the same anatomical labels as the discri-
minative pattern. This issue will be addressed in detail at the
following section.

Discussion and conclusion

Principal component of cortical thickness as a feature for pattern
classification

The original data are represented by fewer variables with
minimal mean square error as a result of PCA, which reduces the
dimensionality of the dataset. However, one of the limitations is that
PCA only defines a single projection of the data. For more complex
data like in this study, different clusters may require different
projection directions. In addition, even if uncorrelated, the principal
components might be highly statistically dependent. The other
limitation of PCA is that the original data should have a linear or
near-linear structure, to ensure the singularity of the data matrix. If
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Table 3
Anatomical label and Talairach coordinate of representative region were
obtained by Talairach Daemon Client software

Lobes x y z Location
Frontal -18 52 -15 L superior frontal gyrus
8 52 22 R superior frontal gyrus
—-30 47 —11 L middle frontal gyrus
37 5 46 R middle frontal gyrus
=31 31 0 L inferior frontal gyrus
26 28 -13 R inferior frontal gyrus
-7 50 -15 L medial frontal gyrus
9 44 24 R medial frontal gyrus
-33 -6 48 L precentral gyrus
30 -13 62 R precentral gyrus
Temporal —41 -32 14 L superior temporal gyrus
60 =31 8 R superior temporal gyrus
Parietal -56 -19 32 L postcentral gyrus
8 —40 67 R postcentral gyrus
=21 =79 39 L precuneus
9 —64 45 R precuneus
Limbic -11 -7 40 L cingulate gyrus
8 -4 36 R cingulate gyrus
-21 -6l 12 L posterior cingulate gyrus
-23 -50 2 L parahippocampal gyrus
28 =50 4 R parahippocampal gyrus

It was defined from whole discriminative patterns according to value passing
a threshold and the size of the cluster.

the data have a nonlinear structure as this study, the linear PCA may
not be adequate in exploring the data. Although this simple
realization has prompted the development of nonlinear alternatives
to PCA, the purpose of this study is the identification of
representative regions contributing to the classification through a
discriminative pattern which is calculated by eigenvectors depend-
ing on selected principal components. Therefore, nonlinear PCA
cannot be useful in this study. If the normative principal components
are derived from the control group data matrix alone, it should be the
best way to reduce dimensionality for classification. However, the
results of such an analysis might be unstable because the number of
control subjects (52) is small relative to the number of variables
(4000—15,000 vertices). We applied PCA to the whole dataset in a
single step, rather than constructing a new basis for each LOOCV
trial based on individual training sets. Although it could be a basis
for overtraining of classifier and a limitation of this study, Shen et al.
(2004) mentioned that it was a simpler approach to minimize
representation errors, which used principal components as features
in the classification. A future direction of study will be involved in
finding normative principal components of cortical thickness with
larger samples and nonlinear techniques.

It is common to assess the performance of the rule for a selected
subset by its LOOCYV error, regardless of how the performance of
the rule is assessed during the feature selection process. But, if it is
calculated within the feature selection process, there is a selection
bias in it when it is used as an estimate of the prediction error
(Ambroise and McLachlan, 2002). External cross-validation
should be undertaken subsequent to the feature selection process
to correct for this selection bias. Alternatively, the bootstrap could
be used so that we simulated using 50 random-selected validation
set, which separated from the training set for the generalization.
The results showed that using too few features was not able to
separate the classes well while using excessively many features
induced unnecessary noise (refer to Fig. 2(b)).

Feature selection is a machine learning method that reduces the
number of statistical features in high-dimensional classification
problems by finding subsets of features that are most relevant for
discrimination. The method dramatically improves the general-
ization ability of a classifier in high-dimensional low sample size
problems (Weston et al., 2000; Yushkevich et al., 2003). A number
of methods use statistical classification to gain insight into the
shape differences of biological objects in distinct classes of
subjects. In particular, several classification studies have been
conducted for elucidation of hippocampal shape abnormalities in
schizophrenia (Csernansky et al., 1998; Golland et al., 2005; Shen
et al., 2003, 2004). The hippocampus is a critical structure of the
human limbic system involved in learning and memory processing.
Although cortical thickness in schizophrenic patients has been
examined using postmortem and in vivo imaging data, there has
been no pattern classification study using features extracted from
the entire cortical surface model. To our knowledge, this is the first
study of classification of schizophrenic patients and healthy
controls based on principal components of cortical thickness. In
addition, we achieved the best mean accuracy of more than 90%
for the classification using 50 random-selected validation set. It
would be competitive with the best result in the classification
studies for hippocampal shape (Csernansky et al., 1998; Golland et
al., 2005; Shen et al., 2003, 2004). However, it should be borne in
mind that the result was acceptable because this study aimed to
examine a discriminative pattern, rather a classification itself.

This study showed that reordering of principal components
associated with statistical tests was much more effective features of
classification. In addition to showing that a high level of
classification accuracy is possible, the results with reordering
might be also instructive in determining how many dimensions are
required to support perfect classification and how many seem
excessive. Even if only cortical thickness were used for
classification in this study, the other geometrical information from
cortical surface model should be extracted and tested for
classification. Mean curvature, Gaussian curvature, or average
convexity, for example, will be particularly informative for
ascertaining the major cortical folds, and these parameters may
further improve the classification accuracy.

Cortical thickness abnormalities in schizophrenia

Most studies suggest that the pathophysiology of schizophrenia
affects several spatially diffused cortical regions such as the lateral
and medial temporal cortices, which might manifest as abnorm-
alities in cortical thickness (Lawrie and Abukmeil, 1998; Shenton
et al., 2001; Wright et al., 1999a,b, 2000). Although less frequently
consistent, GM deficits of schizophrenia in other regions, including
prefrontal and orbitofrontal regions of frontal cortices, and parietal
cortices, are also observed (Shenton et al., 2001).

Our findings in discriminative patterns showed that there were
significant differences of cortical thickness in the bilateral superior
temporal and parahippocampal gyri. In particular, GM volume
reduction in the parahippocampal gyrus involving both the medial
temporal lobe and the superior temporal gyrus has a large
percentage of replication in VBM and volumetric approaches
(Shenton et al., 2001).

The representative regions in the frontal lobe were the bilateral
superior, middle, inferior and medial frontal gyri and precentral
gyrus. MRI findings of frontal lobe volume deficits in schizo-
phrenia have been relatively inconsistent, with several studies
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reporting reduced volume in schizophrenia and others reporting no
significant differences (Goldstein et al., 1999; McCarley et al.,
1999; Shenton et al., 2001). Although a few studies have evaluated
subregions within the frontal lobe, Buchanan et al. (1998) reported
volume reductions in prefrontal WM as well as right and left
inferior gyri volume reduction in schizophrenia. Cortical volume
reduction of precentral gyrus has been reported, which partially
results in impaired motor functioning as well as abnormal
physiological and primitive reflexes in schizophrenia (Ismail
et al., 1998).

The regions in parietal lobe having significant discriminative
power were the postcentral gyrus and the precuneus bilaterally.
Although the parietal lobe is an important brain region for
language processing, spatial working memory and attention, which
are disturbed in schizophrenia, it has received very little attention
(Shenton et al.,, 2001). Recently, several VBM studies have
reported GM reduction of the left postcentral gyrus, but increase of
the precuneus associated with better immediate verbal memory in
patients (Antonova et al., 2005; Job et al., 2002).

Finally, other important regions worthy of investigation were
the bilateral cingulate gyrus. It is a pivotal component of brain
networks directing affective and cognitive functions, and abnorm-
alities of that region may be involved in the pathophysiology of
schizophrenia. Although morphological studies of cingulate gyrus
have been few and inconsistent, Kopelman et al. (2005) reported
that the schizophrenic patient group had a significantly larger left
anterior cingulate gyrus volume relative to comparison subjects.

As described above, most representative regions having signi-
ficantly discriminative power in this study were generally consis-
tent with previous image-based or surface-based analysis, but quite
focal. Although there were several reasons, PCA for dimension
reduction should affect primarily those results. Generally, PCA
extracts patterns explaining the greatest variance in the data. It
cannot be guaranteed whether those patterns in the original space
are continuous. In addition, the clusters of our result seem
associated with network implicated in schizophrenia such as the
frontotemporal network for processing auditory information and
language (Gaser et al., 2004). The proposed method in this study
permitted more precise description of the differences between
groups so that it would be robust basis for diagnostic application.

Methodological considerations

Since most image processing algorithms, notably segmentation,
are sensitive to noise, improvement of the signal to noise ratio
would improve our algorithm. And, anisotropic diffusion (AD)
filter, which was used for noise reduction in this study, was
designed to operate on images consisting of homogeneous regions
with slowly varying intensities, separated by well-defined
boundaries. Since the bias field changes the contrast across
anatomical edges throughout the image, preprocessing with the AD
filter tends to suppress the edges more in regions of low bias than
in regions of high bias (low bias is when bias is small and creates a
large gray level distortion, high bias causes little or no gray level
distortion). Guillemaud and Brady (1997) reported that the
estimated bias field is essentially the same with or without
prefiltering to remove noise. However, the final segmentation of
the data is sensitive to noise, which involves determining the
maximum likelihood tissue type for each voxel. Although it is
beyond the scope of our study, the effect of the sequential order of
bias filed correction and AD filtering on the cortical thickness

would be necessary to investigate in the future. On the other hand,
even if a wider space between the banks of a sulcus could lead to
different behavior of AD filtering, it might be out of the question
because the main point of this study was the cortical thickness
between WM and GM surfaces and AD filtering would make a
same effect on those surfaces. In addition, our previous volumetric
study showed there was no significant effect of AD filtering on
tissue classification (Yoon et al., 2003).

Generally, there might be several limitations associated with
measuring cortical thickness from imaging data. For example, if
the image contrast is reduced because of partial volume effects as
intrinsic artifacts of MRI, GM boundaries might be irregular,
leading to spatial inaccuracies in thickness value. However, cortical
thickness measured at the nodes of a polygonal mesh rather than a
voxel grid should have the advantage of providing a direct and
accurate quantitative index of cortical morphology if the faithful
reconstruction of surface models that represent the true cortical
surface in both geometry and topology is guaranteed. Previously,
we performed a quantitative cross-validation of the most prominent
cortical surface reconstruction tools, including CLASP used in this
study (Lee et al, 2006). Although there might be different
viewpoints for validation, CLASP showed the best geometric and
topological accuracy and mesh characteristics. As described above,
the geometric accuracy of surface extraction is essential for the
accurate measurement of morphological variables such as cortical
thickness and cortical surface area. Therefore, it is reliable to use
the cortical thickness values obtained by the methods used in this
study as a feature for pattern classification.

It is notable that the univariate (voxel-by-voxel) statistical
analysis, which is a hypothesis-driven approach, shows the same
anatomical labels as the discriminative pattern generated from PCA
and linear classifier, which is a purely data-driven method. The
proposed method is able to identify unexpected sources of
difference without any prior knowledge of data so that it can be
seen as a hypothesis generating method. However, the representa-
tive regions of discriminative pattern and statistical r-test were
somewhat different with each other (refer to Fig. 3). It might come
from inevitable defects of feature selection for classification. For
instance, the results of PCA might be somewhat unstable due to the
restricted number of subject relative to the variables such as the
number of vertex. And, if there is imperfection in the rearrange-
ment of feature for classification, a certain principal component
which included specific regions might be excluded from a
classification. Both of them need to be tested in further studies.

Although PCA was applied to reduce dimensionality and make
classification feasible in this study, its utility depends on whether
meaningful biological interpretation can be described as different
components, as PCA is an uninformed multivariate procedure.
Wright et al. (1999b) conducted an exploratory analysis to
identify supra-regional brain systems and to investigate whether
abnormal brain architecture in schizophrenia manifests within one
or more of these systems. Although they meaningfully interpreted
components of regional brain measures extracted by PCA in terms
of normal brain architecture and function, there was a critical
limitation on automated cerebral parcellation due to the inter-
individual variability in the anatomical boundaries of Brodmann
regions. In a future study, we will attempt to overcome this kind
of defect using a reconstruction of cortical surface model that is
accurate in geometry and topology, and investigate the clinical
meaning of principal components from cortical thickness
measurements.
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Although Davatzikos et al. (2005) were able to classify new
individuals as schizophrenic or healthy with the reasonable
accuracy, larger samples were necessary to replicate the results
and establish regional group differences. Rather than classification
itself, this study concerned to identify representative regions
contributing to the classification through a discriminative pattern.
Even if the discriminative pattern is less conservative than
statistical #-test, this approach including the classifier interpretation
in terms of the original features should be an important component
of the data analysis in many applications where the statistical
learning techniques are used to discover and study structural
differences in the data. In addition, our classification results
suggest that complex spatial patterns of morphometric character-
istics can be used as an aid in the diagnosis of schizophrenia. The
leave-one-out procedure is well established as a means for
obtaining relatively unbiased estimates of the expected accuracy
of the resulting classifier function, but for a small number of
examples, the variance of this estimator might lead to a substantial
difference between the estimated and the actual measurements. As
the number of available examples increases, a more accurate
estimation of the expected accuracy will be allowed. We also
examined more effective feature selection schemes for improved
classification accuracy. Although the training algorithm will
produce a classifier that can be analyzed for discriminative
pattern, the shape differences found in the training set are useful
for understanding the phenomenon only if they accurately reflect
the morphological differences in the entire population (Golland et
al., 2005). As discriminative patterns derived from the classifier
were consistent with a previous morphological analysis of
schizophrenic patients, as described above, it can be said that
the potential benefits of such diagnostic tools are improved by
these findings.

Acknowledgment

This work was supported by the research fund of Hanyang
University (HY-2004-N).

References

Ambroise, C., McLachlan, G.J., 2002. Selection bias in gene extraction
on the basis of microarray gene-expression data. Proc. Natl. Acad.
Sci. U. S. A. 99 (10), 6562—6566.

Antonova, E., Kumari, V., Morris, R., Halari, R., Anilkumar, A., Mehrotra,
R., Sharma, T., 2005. The relationship of structural alterations to
cognitive deficits in schizophrenia: a voxel-based morphometry study.
Biol. Psychiatry 58 (6), 457-467.

APA, 1987. Diagnostic and Statistical Manual of Mental Disorders, 3rd ed.,
revised. American Psychiatric Press Inc., Washington, DC.

Ashburner, J., Friston, K.J., 2000. Voxel-based morphometry—the methods.
Neurolmage 11 (6 Pt. 1), 805-821.

Buchanan, R.W., Vladar, K., Barta, P.E., Pearlson, G.D., 1998. Structural
evaluation of the prefrontal cortex in schizophrenia. Am. J. Psychiatry
155 (8), 1049-1055.

Burges, C.J.C., 1998. A tutorial on support vector machines for pattern
recognition. Data Mining Knowl. Discov. 2 (2), 121-167.

Burns, J., Job, D., Bastin, M.E., Whalley, H., Macgillivray, T., Johnstone,
E.C., Lawrie, S.M., 2003. Structural disconnectivity in schizophrenia:
a diffusion tensor magnetic resonance imaging study. Br. J. Psychiatry
182, 439-443.

Cheverud, J.M., 1982. Phenotypic, genetic, and environmental morpholog-
ical integration in the cranium. Evolution 36, 499-516.

Chung, M.K., Worsley, K.J., Paus, T., Robbins, S., Evans, A.C., Taylor, J.,
Giedd, J.N., Rapoport, J.L., 2002. Tensor-based Surface Morphometry.
University of Wisconsin, Madison.

Collins, D.L., Neelin, P., Peters, T.M., Evans, A.C., 1994. Automatic 3D
intersubject registration of MR volumetric data in standardized Talairach
space. J. Comput. Assist. Tomogr. 18 (2), 192-205.

Cox, R.W., Hyde, J.S., 1997. Software tools for analysis and visualization of
fMRI data. NMR Biomed. 10 (4-5), 171-178.

Csernansky, J.G., Joshi, S., Wang, L., Haller, J.W., Gado, M., Miller, J.P.,
Grenander, U., Miller, M.I,, 1998. Hippocampal morphometry in
schizophrenia by high dimensional brain mapping. Proc. Natl. Acad.
Sci. U. S. A. 95 (19), 11406—-11411.

Davatzikos, C., Shen, D., Gur, R.C., Wu, X,, Liu, D., Fan, Y., Hughett, P.,
Turetsky, B.I.,, Gur, R.E., 2005. Whole-brain morphometric study of
schizophrenia revealing a spatially complex set of focal abnormalities.
Arch. Gen. Psychiatry 62, 1218-1227.

Duda, R.O., Hart, P.E., Stork, D., 2000. Pattern Classification, 2nd ed. John
Wiely and Sons, New York.

Fan, R.E., Chen, PH., Lin, C.J., 2005. Working set selection using the
second order information for training SVM. J. Mach. Learn. Res. 6,
1889-1918.

First, M.B., Spitzer, R.L., Williams, J.B., Gibbon, M., 1997. User’s Guide
for the Structured Clinical Interview for DSM-IV AXIS 1 Disorders
(SCID-I): Clinician Version. American Psychiatric Publishing, Inc., New
York.

Gaser, C., Nenadic, I., Volz, H.P.,, Buchel, C., Sauer, H., 2004.
Neuroanatomy of “hearing voices”: a frontotemporal brain structural
abnormality associated with auditory hallucinations in schizophrenia.
Cereb. Cortex 14 (1), 91-96.

Genovese, C.R., Lazar, N.A., Nichols, T., 2002. Thresholding of statistical
maps in functional neuroimaging using the false discovery rate.
Neurolmage 15 (4), 870—-878.

Goldstein, J.M., Goodman, J.M., Seidman, L.J., Kennedy, D.N., Makris, N.,
Lee, H., Tourville, J., Caviness Jr., V.S., Faraone, S.V., Tsuang, M.T.,
1999. Cortical abnormalities in schizophrenia identified by structural
magnetic resonance imaging. Arch. Gen. Psychiatry 56 (6), 537-547.

Golland, P., Grimson, W.E., Shenton, M.E., Kikinis, R., 2005. Detection and
analysis of statistical differences in anatomical shape. Med. Image Anal.
9 (1), 69-86.

Guillemaud, R., Brady, M., 1997. Estimating the bias field of MR images.
IEEE Trans. Med. Imag. 16 (3), 238-251.

Hughes, G.F., 1968. On the mean accuracy of statistical pattern recognizers.
IEEE Trans. Inf. Theory 14, 55-63.

Im, K., Lee, JM., Lee, J., Shin, Y.W., Kim, 1.Y., Kwon, J.S., Kim, S.I., 2006.
Gender difference analysis of cortical thickness in healthy young adults
with surface-based methods. Neurolmage 31 (1), 31-38.

Ismail, B., Cantor-Graae, E., McNeil, T.F., 1998. Neurological abnormalities
in schizophrenic patients and their siblings. Am. J. Psychiatry 155 (1),
84-89.

Job, D.E., Whalley, H.C., McConnell, S., Glabus, M., Johnstone, E.C.,
Lawrie, S.M., 2002. Structural gray matter differences between first-
episode schizophrenics and normal controls using voxel-based mor-
phometry. Neurolmage 17 (2), 880—889.

Kabani, N., Le Goualher, G., MacDonald, D., Evans, A.C., 2001.
Measurement of cortical thickness using an automated 3-D algorithm:
a validation study. Neurolmage 13 (2), 375-380.

Kay, S.R., Fiszbein, A., Opler, L.A., 1987. The positive and negative
syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13 (2),
261-276.

Kim, J.S., Singh, V., Lee, J.K., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D.,
Lee, JM., Kim, S.I., Evans, A.C., 2005. Automated 3-D extraction and
evaluation of the inner and outer cortical surfaces using a Laplacian map
and partial volume effect classification. Neurolmage 27 (1), 210-221.

Kopelman, A., Andreasen, N.C., Nopoulos, P., 2005. Morphology of the
anterior cingulate gyrus in patients with schizophrenia: relationship to
typical neuroleptic exposure. Am. J. Psychiatry 162 (10), 1872—1878.

Kuperberg, G.R., Broome, M.R., McGuire, PX., David, A.S., Eddy, M.,



U. Yoon et al. / Neurolmage 34 (2007) 1405-1415 1415

Ozawa, F., Goff, D., West, W.C., Williams, S.C., van der Kouwe, A.J.,
2003. Regionally localized thinning of the cerebral cortex in
schizophrenia. Arch. Gen. Psychiatry 60 (9), 878—888.

Lawrie, S.M., Abukmeil, S.S., 1998. Brain abnormality in schizophrenia. A
systematic and quantitative review of volumetric magnetic resonance
imaging studies. Br. J. Psychiatry 172, 110-120.

Lee, J K., Lee, J.M., Kim, J.S., Kim, LY., Evans, A.C., Kim, S.I., 2006. A
novel quantitative cross-validation of different cortical surface recon-
struction algorithms using MRI phantom. Neurolmage 31 (2), 572-584.

Lerch, J.P., Evans, A.C., 2005. Cortical thickness analysis examined through
power analysis and a population simulation. Neurolmage 24 (1),
163-173.

Lerch, J.P., Pruessner, J.C., Zijdenbos, A., Hampel, H., Teipel, S.J.,
Evans, A.C., 2005. Focal decline of cortical thickness in Alzheimer’s
disease identified by computational neuroanatomy. Cereb. Cortex 15
(7), 995-1001.

Lerch, J.P., Worsley, K., Shaw, W.P., Greenstein, D.K., Lenroot, R.K.,
Giedd, J., Evans, A.C., 2006. Mapping anatomical correlations across
cerebral cortex (MACACC) using cortical thickness from MRI.
Neurolmage 31 (3), 993-1003.

MacDonald, D., Kabani, N., Avis, D., Evans, A.C., 2000. Automated 3-D
extraction of inner and outer surfaces of cerebral cortex from MRI.
Neurolmage 12 (3), 340-356.

McCarley, R.W., Wible, C.G., Frumin, M., Hirayasu, Y., Levitt, J.J., Fischer,
I.A., Shenton, M.E., 1999. MRI anatomy of schizophrenia. Biol.
Psychiatry 45 (9), 1099—1119.

Narr, K.L., Bilder, R.M., Toga, A.W., Woods, R.P., Rex, D.E., Szeszko, P.R.,
Robinson, D., Sevy, S., Gunduz-Bruce, H., Wang, Y.P., 2005a. Mapping
cortical thickness and gray matter concentration in first-episode
schizophrenia. Cereb. Cortex 15 (6), 708—719.

Narr, K.L., Toga, A.W., Szeszko, P., Thompson, P.M., Woods, R.P.,
Robinson, D., Sevy, S., Wang, Y., Schrock, K., Bilder, R.M., 2005b.
Cortical thinning in cingulate and occipital cortices in first episode
schizophrenia. Biol. Psychiatry 58 (1), 32—40.

Olson, E.C., Miller, R.L., 1958. Morphological Integration. University of
Chicago Press, Chicago, IL.

Robbins, S., 2003. Anatomical standardization of the human brain in
Euclidean 3-space and on the cortical 2-manifold. PhD thesis. School of
Computer Science, McGill University, Canada.

Robbins, S., Evans, A.C., Collins, D.L., Whitesides, S., 2004. Tuning and
comparing spatial normalization methods. Med. Image Anal. 8 (3),
311-323.

Selemon, L.D., 2004. Increased cortical neuronal density in schizophrenia.
Am. J. Psychiatry 161 (9), 1564.

Selemon, L.D., Rajkowska, G., Goldman-Rakic, P.S., 1995. Abnormally
high neuronal density in the schizophrenic cortex. A morphometric
analysis of prefrontal area 9 and occipital area 17. Arch. Gen. Psychiatry
52 (10), 805—818 (discussion 819-820).

Shen, L., Ford, J., Makedon, F., Saykin, A., 2003. Hippocampal shape
analysis: surface-based representation and classification. Proc.-SPIE
253-264.

Shen, L., Ford, J., Makedon, F., Saykin, A., 2004. A surface-based approach
for classification of 3D neuroanatomic structures. Intell. Data Anal., Int.
J. 8 (6), 519-542.

Shenton, M.E., Dickey, C.C., Frumin, M., McCarley, R.W., 2001. A review
of MRI findings in schizophrenia. Schizophr. Res. 49 (1-2), 1-52.
Sled, J.G., Zijdenbos, A.P., Evans, A.C., 1998. A nonparametric method for
automatic correction of intensity nonuniformity in MRI data. IEEE

Trans. Med. Imag. 17 (1), 87-97.

Vapnik, V., 1998. Statistical Learning Theory. John Wiley and Sons, New
York, NY.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.,
2000. Feature selection for SVMs. Adv. Neural Inf. Process. Syst. 13,
668—674.

White, T., Andreasen, N.C., Nopoulos, P., Magnotta, V., 2003. Gyrification
abnormalities in childhood- and adolescent-onset schizophrenia. Biol.
Psychiatry 54 (4), 418—426.

Wiegand, L.C., Warfield, S.K., Levitt, J.J., Hirayasu, Y., Salisbury, D.F.,
Heckers, S., Dickey, C.C., Kikinis, R., Jolesz, F.A., McCarley, R.W.,
2004. Prefrontal cortical thickness in first-episode psychosis: a
magnetic resonance imaging study. Biol. Psychiatry 55 (2),
131-140.

Wright, 1.C., Ellison, Z.R., Sharma, T., Friston, K.J., Murray, R.M.,
McGuire, P.K., 1999a. Mapping of grey matter changes in schizophre-
nia. Schizophr. Res. 35 (1), 1-14.

Wright, 1.C., Sharma, T., Ellison, Z.R., McGuire, P.K., Friston, K.J.,
Brammer, M.J., Murray, R.M., Bullmore, E.T., 1999b. Supra-regional
brain systems and the neuropathology of schizophrenia. Cereb. Cortex 9
(4), 366-378.

Wright, I.C., Rabe-Hesketh, S., Mellers, J., Bullmore, E.T., 2000. Testing for
laterality differences in regional brain volumes. Arch. Gen. Psychiatry
57 (5), 511-512.

Yoon, U., Lee, J.M., Kim, J.J., Lee, S.M., Kim, LY., Kwon, J.S., Kim, S.I.,
2003. Modified magnetic resonance image based parcellation method
for cerebral cortex using successive fuzzy clustering and boundary
detection. Ann. Biomed. Eng. 31 (4), 441-447.

Yoon, U., Lee, J.M., Koo, B.B., Shin, Y.W., Lee, K.J., Kim, I.Y., Kwon, J.S.,
Kim, S.I., 2005. Quantitative analysis of group-specific brain tissue
probability map for schizophrenic patients. Neurolmage 26 (2),
502-512.

Yushkevich, P., Joshi, S., Pizer, S.M., Csernansky, J.G., Wang, L.E., 2003.
Feature selection for shape-based classification of biological objects.
Lect. Notes Comput. Sci. 2732, 114-125.

Zijdenbos, A.P., Forghani, R., Evans, A.C., 2002. Automatic “pipeline”
analysis of 3-D MRI data for clinical trials: application to multiple
sclerosis. IEEE Trans. Med. Imag. 21 (10), 1280—1291.



	Pattern classification using principal components of cortical thickness and its discriminative .....
	Introduction
	Materials and methods
	Subjects
	MR image acquisition and cortical surface extraction
	Measurement of cortical thickness and principal component �analysis
	Support vector machine and feature selection methods
	Discriminative patterns for classification

	Results
	Classification results using different feature selection schemes
	Discriminative patterns

	Discussion and conclusion
	Principal component of cortical thickness as a feature for pattern classification
	Cortical thickness abnormalities in schizophrenia
	Methodological considerations

	Acknowledgment
	References


