4,659 research outputs found

    Harmonising International Development Efforts with Resource Diplomacy: Potential for the strategic use of ODA to Secure Lithium in South America

    Full text link
    Korea's current Green Growth strategy seeks to lessen the country's dependence on fossil fuel resources and promote significant investment into the development of alternative, environmentally-friendly energy sources. As part of this strategy Korea has been investing heavily in the development of various green energy industries in particular it has become one of the world's largest manufacturers of lithium based rechargeable-ion batteries to power electric or hybrid motor vehicles. The continued growth of this industry requires a secure and stable supply of lithium and to this end the Korean government has developed its so-called 'resource diplomacy' strategy which is designed promote relations with countries with significant lithium deposits such as Chile, Argentina and Bolivia. However, to date, resource diplomacy has been somewhat narrowly targeted at domestic policies that support Korean firms to invest directly in acquiring and developing lithium mines or to increasing the number of embassies in these countries. More recently the Korean government is considering broader diplomatic measures. The paper argues that resource diplomacy has the potential to be an effective means of achieving Korea's green growth objectives but that the success of this strategy must go beyond facilitating Korean direct foreign investment to become a more fully fledged cultural and foreign aid and development diplomacy strategy that promotes longer term, broader and deeper levels of engagement. This 'soft-power' approach is more likely to serve as an effective but subtle means to exert influence not only to promote specific Korean interests but to achieve longer term, mutually beneficial outcomes for both Korea and these South American nations

    Determinants of gain modulation enabled by short-term depression at an inhibitory cerebellar synapse

    Get PDF
    Abstract from the 23rd Annual Computational Neuroscience Meeting: CNS 2014. © 2014 Bampasakis et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise statedNeurons adapt rapidly the slope, also known as gain, of their input-output function to time-varying conditions. Gain modulation is a prominent mechanism in many brain processes, such as auditory processing and attention scaling of orientation tuning curves.Peer reviewe

    Direct observation of the spin polarization in Au atomic wires on Si(553)

    Get PDF
    The spin-resolved electronic band structure of Au-induced metallic atomic wires on a vicinal silicon surface, Si(553), was investigated using spin-and angle-resolved photoelectron spectroscopy. We directly measured the spin polarization of three partially filled one-dimensional metallic bands, a one-third-filled band, and the doublet of nearly half-filled bands. For the half-filled doublet, the strong apparent spin polarization was observed near the Fermi energy with a minor out-of-plane spin component. This observation is consistent with the Rashba-type spin-orbit splitting and with a recent experiment on a similar doublet of Si(557)-Au. In contrast, the one-third-filled band does not show a substantial spin polarization within the experimental accuracy, indicating a much smaller spin splitting, if any. These results are discussed for the origin of the partially filled bands and for the intriguing broken-symmetry ground state observed at low temperature.X11116sciescopu

    A study on fire design accidental loads for aluminum safety helidecks

    Get PDF
    The helideck structure must satisfy the safety requirements associated with various environmental and accidental loads. Especially, there have been a number of fire accidents offshore due to helicopter collision (take-off and/or landing) in recent decades. To prevent further accidents, a substantial amount of effort has been directed toward the management of fire in the safety design of offshore helidecks. The aims of this study are to introduce and apply a procedure for quantitative risk assessment and management of fires by defining the fire loads with an applied example. The frequency of helicopter accidents are considered, and design accidental levels are applied. The proposed procedures for determining design fire loads can be efficiently applied in offshore helideck development projects

    Physical origin of residual thermal stresses in a multilayer ceramic capacitor

    Get PDF
    The physical origin of the residual stresses developed in the ceramic layer of the active region in a multilayer ceramic capacitor was numerically investigated. The compressive in-plane stress components σ11 and σ22 originate without regard to the presence of the margins but rather from the difference in in-plane thermal shrinkage between ceramic and metal electrode. The out-of-plane stress component σ33 physically originates mainly through the presence of the housing margin; the presence of the lateral margin is a minor source: the more ceramic-rich margins hinder the apparent vertical shrinkage of the active region to yield tensile σ33. © 2007 American Institute of Physics

    Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database

    Full text link
    Radiologists in their daily work routinely find and annotate significant abnormalities on a large number of radiology images. Such abnormalities, or lesions, have collected over years and stored in hospitals' picture archiving and communication systems. However, they are basically unsorted and lack semantic annotations like type and location. In this paper, we aim to organize and explore them by learning a deep feature representation for each lesion. A large-scale and comprehensive dataset, DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and size measurements of over 32K lesions. To model their similarity relationship, we leverage multiple supervision information including types, self-supervised location coordinates and sizes. They require little manual annotation effort but describe useful attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings with a sequential sampling strategy to depict their hierarchical similarity structure. Experiments show promising qualitative and quantitative results on lesion retrieval, clustering, and classification. The learned embeddings can be further employed to build a lesion graph for various clinically useful applications. We propose algorithms for intra-patient lesion matching and missing annotation mining. Experimental results validate their effectiveness.Comment: Accepted by CVPR2018. DeepLesion url adde

    PGC-Enriched miRNAs Control Germ Cell Development

    Get PDF
    published_or_final_versio

    Enhancing photocatalytic activity by using TiO <inf>2</inf>-MgO core-shell-structured nanoparticles

    Get PDF
    Hygroscopic Mg(OH) 2 gel was topotactically decomposed on TiO 2 particle surfaces, resulting in highly nanoporous MgO-coated TiO 2 particles. The highly hygroscopic and nanoporous MgO shell absorbed more water molecules and hydroxyl groups from the environment to yield an improved photocatalytic property of the core-shell particles as compared to the uncoated TiO 2 counterpart. © 2006 American Institute of Physics

    Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway

    Get PDF
    In contrast to molecular chaperones that couple protein folding to ATP hydrolysis, protein disulfide-isomerase (PDI) catalyzes protein folding coupled to formation of disulfide bonds (oxidative folding). However, we do not know how PDI distinguishes folded, partly-folded and unfolded protein substrates. As a model intermediate in an oxidative folding pathway, we prepared a two-disulfide mutant of basic pancreatic trypsin inhibitor (BPTI) and showed by NMR that it is partly-folded and highly dynamic. NMR studies show that it binds to PDI at the same site that binds peptide ligands, with rapid binding and dissociation kinetics; surface plasmon resonance shows its interaction with PDI has a Kd of ca. 10−5 M. For comparison, we characterized the interactions of PDI with native BPTI and fully-unfolded BPTI. Interestingly, PDI does bind native BPTI, but binding is quantitatively weaker than with partly-folded and unfolded BPTI. Hence PDI recognizes and binds substrates via permanently or transiently unfolded regions. This is the first study of PDI's interaction with a partly-folded protein, and the first to analyze this folding catalyst's changing interactions with substrates along an oxidative folding pathway. We have identified key features that make PDI an effective catalyst of oxidative protein folding – differential affinity, rapid ligand exchange and conformational flexibility
    corecore