7,900 research outputs found

    Bernardin Frankapan i Krbavska bitka: je li spasio sebe i malobrojne ili je pobjegao iz boja?

    Get PDF
    Veliki poraz hrvatske vojske od Osmanlija na Krbavskom polju 9. rujna 1493. predstavlja jednu od najvažnijih epizoda u dugotrajnom obrambenom ratu Hrvata protiv Osmanlija. Iako su uzroci i posljedice, pa i sam tijek bitke, već u znatnoj mjeri prikazani u starijoj i novijoj hrvatskoj historiografiji, ipak su uloga i djelovanje kneza Bernardina Frankapana u samoj bitki i događajima koji su joj prethodili, ostali u značajnoj mjeri nerasvijetljeni i nerazjaÅ”njeni. Autor na osnovi sačuvanih pisanih i arheoloÅ”kih svjedočanstva, kao i nakon uvida na terenu, analizira događaje koji su prethodili Bernardinovu povlačenju iz bitke, pokuÅ”avajući odgonetnuti uzroke i motive takova poteza. Isto tako, detaljnijim uvidom u sačuvana pisana svjedočanstva o događajima prije Krbavske bitke, pokuÅ”ava objasniti odnose između bana Derenčina i knezova Frankapana.The great defeat of Croatian army against ottoman troops in the battle of Krbava field (9th September 1493) is one of the most important episode in longā€“lasting defensive war against Ottoman Empire. Although, the causes and the consequences, and the very duration of the battle, are already elaborated in older and newer Croatian historiography, the role and actions of the duke Bernardin Frankapan in the events before battle and in the battle are still not illuminated and dismissed. Analyzing the written sources and archeological artifacts, author describes events that are preceded Bernardinā€™s evacuation from the battle. He is, also, trying to figure out the motives and causes of such actions. Further more, by detailing analysis of written sources about events before battle of Krbava field, author clarifies relationships between banus Derenčin and ducal family of Frankapan

    Novel Approaches to Inhibition of Gastric Acid Secretion

    Get PDF
    The gastric H,K-adenosine triphosphatase (ATPase) is the primary target for treatment of acid-related diseases. Proton pump inhibitors (PPIs) are weak bases composed of two moieties, a substituted pyridine with a primary pKa of about 4.0 that allows selective accumulation in the secretory canaliculus of the parietal cell, and a benzimidazole with a second pKa of about 1.0. Protonation of this benzimidazole activates these prodrugs, converting them to sulfenic acids and/or sulfenamides that react covalently with one or more cysteines accessible from the luminal surface of the ATPase. The maximal pharmacodynamic effect of PPIs as a group relies on cyclic adenosine monophosphateā€“driven H,K-ATPase translocation from the cytoplasm to the canalicular membrane of the parietal cell. At present, this effect can only be achieved with protein meal stimulation. Because of covalent binding, inhibitory effects last much longer than their plasma half-life. However, the short dwell-time of the drug in the blood and the requirement for acid activation impair their efficacy in acid suppression, particularly at night. All PPIs give excellent healing of peptic ulcer and produce good, but less than satisfactory, results in reflux esophagitis. PPIs combined with antibiotics eradicate Helicobacter pylori, but success has fallen to less than 80%. Longer dwell-time PPIs promise to improve acid suppression and hence clinical outcome. Potassium-competitive acid blockers (P-CABs) are another class of ATPase inhibitors, and at least one is in development. The P-CAB under development has a long duration of action even though its binding is not covalent. PPIs with a longer dwell time or P-CABs with long duration promise to address unmet clinical needs arising from an inability to inhibit nighttime acid secretion, with continued symptoms, delayed healing, and growth suppression of H. pylori reducing susceptibility to clarithromycin and amoxicillin. Thus, novel and more effective suppression of acid secretion would benefit those who suffer from acid-related morbidity, continuing esophageal damage and pain, nonsteroidal anti-inflammatory drugā€“induced ulcers, and nonresponders to H. pylori eradication

    Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A strong association between stress resistance and longevity in multicellular organisms has been established as many mutations that extend lifespan also show increased resistance to stress. AAK-2, the <it>C. elegans </it>homolog of an alpha subunit of AMP-activated protein kinase (AMPK) is an intracellular fuel sensor that regulates cellular energy homeostasis and functions in stress resistance and lifespan extension.</p> <p>Findings</p> <p>Here, we investigated global transcriptional responses of <it>aak-2 </it>mutants to oxidative stress and in turn identified potential downstream targets of AAK-2 involved in stress resistance in <it>C. elegans</it>. We employed massively parallel Illumina sequencing technology and performed comprehensive comparative transcriptome analysis. Specifically, we compared the transcriptomes of <it>aak-2 </it>and wild type animals under normal conditions and conditions of induced oxidative stress. This research has presented a snapshot of genome-wide transcriptional activities that take place in <it>C. elegans </it>in response to oxidative stress both in the presence and absence of AAK-2.</p> <p>Conclusions</p> <p>The analysis presented in this study has enabled us to identify potential genes involved in stress resistance that may be either directly or indirectly under the control of AAK-2. Furthermore, we have extended our current knowledge of general defense responses of <it>C. elegans </it>against oxidative stress supporting the function for AAK-2 in inhibition of biosynthetic processes, especially lipid synthesis, under oxidative stress and transcriptional regulation of genes involved in reproductive processes.</p

    From on-road to off : transfer learning within a deep convolutional neural network for segmentation and classification of off-road scenes.

    Get PDF
    Real-time road-scene understanding is a challenging computer vision task with recent advances in convolutional neural networks (CNN) achieving results that notably surpass prior traditional feature driven approaches. Here, we take an existing CNN architecture, pre-trained for urban road-scene understanding, and retrain it towards the task of classifying off-road scenes, assessing the network performance within the training cycle. Within the paradigm of transfer learning we analyse the effects on CNN classification, by training and assessing varying levels of prior training on varying sub-sets of our off-road training data. For each of these configurations, we evaluate the network at multiple points during its training cycle, allowing us to analyse in depth exactly how the training process is affected by these variations. Finally, we compare this CNN to a more traditional approach using a feature-driven Support Vector Machine (SVM) classifier and demonstrate state-of-the-art results in this particularly challenging problem of off-road scene understanding

    Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state

    Get PDF
    The formation of 2D polyaniline (PANI) has attracted considerable interest due to its expected electronic and optoelectronic properties. Although PANI was discovered over 150 y ago, obtaining an atomically well-defined 2D PANI framework has been a longstanding challenge. Here, we describe the synthesis of 2D PANI via the direct pyrolysis of hexaaminobenzene trihydrochloride single crystals in solid state. The 2D PANI consists of three phenyl rings sharing six nitrogen atoms, and its structural unit has the empirical formula of C3N. The topological and electronic structures of the 2D PANI were revealed by scanning tunneling microscopy and scanning tunneling spectroscopy combined with a first-principle density functional theory calculation. The electronic properties of pristine 2D PANI films (undoped) showed ambipolar behaviors with a Dirac point of -37 V and an average conductivity of 0.72 S/cm. After doping with hydrochloric acid, the conductivity jumped to 1.41 x 10(3) S/cm, which is the highest value for doped PANI reported to date. Although the structure of 2D PANI is analogous to graphene, it contains uniformly distributed nitrogen atoms for multifunctionality; hence, we anticipate that 2D PANI has strong potential, from wet chemistry to device applications, beyond linear PANI and other 2D materials.116431Ysciescopu

    High-yield isolation of extracellular vesicles using aqueous two-phase system

    Get PDF
    Extracellular vesicles (EVs) such as exosomes and microvesicles released from cells are potential biomarkers for blood-based diagnostic applications. To exploit EVs as diagnostic biomarkers, an effective pre-analytical process is necessary. However, recent studies performed with blood-borne EVs have been hindered by the lack of effective purification strategies. In this study, an efficient EV isolation method was developed by using polyethylene glycol/dextran aqueous two phase system (ATPS). This method provides high EV recovery efficiency (similar to 70%) in a short time (similar to 15 min). Consequently, it can significantly increase the diagnostic applicability of EVs.113219Ysciescopu

    Semiclassical Analysis of M2-brane in AdS_4 x S^7 / Z_k

    Full text link
    We start from the classical action describing a single M2-brane on AdS_4 x S^7/ Z_k and consider semiclassical fluctuaitions around a static, 1/2 BPS configuration whose shape is AdS_2 x S^1. The internal manifold S^7/ Z_k is described as a U(1) fibration over CP^3 and the static configuration is wrapped on the U(1) fiber. Then the configuration is reduced to an AdS_2 world-sheet of type IIA string on AdS_4 x CP^3 through the Kaluza-Klein reduction on the S^1. It is shown that the fluctuations form an infinite set of N=1 supermultiplets on AdS_2, for k=1,2. The set is invariant under SO(8) which may be consistent with N=8 supersymmetry on AdS_2. We discuss the behavior of the fluctuations around the boundary of AdS_2 and its relation to deformations of Wilson loop operator.Comment: 27 pages, v2: references added, v3: major revision including the clarification of k=2 case, references added, version to appear in JHE

    Symmetry energy of dense matter in holographic QCD

    Full text link
    We study the nuclear symmetry energy of dense matter using holographic QCD. To this end, we consider two flavor branes with equal quark masses in a D4/D6/D6 model. We find that at all densities the symmetry energy monotonically increases. At small densities, it exhibits a power law behavior with the density, Esymāˆ¼Ļ1/2E_{\rm sym} \sim \rho^{1/2}.Comment: 9 pages, 3 figure
    • ā€¦
    corecore