607 research outputs found
Automated Attendance System
The Automated Attendance System will automatically capture students’ attendance using RFID and face recognition technology. The system is consisted of a camera, a RFID reader and tags, as well as a software system. The camera will capture the image of the user when he/she passes the RFID card by the reader. The RFID reader will collect the information from the tag, digitize it, and transmit it to the computer. The software will then retrieve the student information associated with the RFID tag, check whether the student is enrolled in the class and compare the student’s photo with the image captured by the camera. With our Automated Attendance System, the lecturer can easily and automatically keep track of student attendance and can check that the student themselves are taking the exam
Potentiometric detection in ion chromatography using multi-ionophore membrane electrodes
The incorporation of ionophores selective for ammonium, potassium, sodium and calcium ions in an appropriate proportion into a plasticized poly(vinyl chloride) membrane provides a potentiometric membrane sensor with similar sensitivity to ammonium, alkali and alkaline earth metal ions. Such a sensor was employed in single-column ion chromatography using the wall-jet flow-cell arrangement, and was shown to exhibit similar detectability to that observed for conductivity detection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30547/1/0000180.pd
Spectra of Chromosomal Aberrations in 325 Leukemia Patients and Implications for the Development of New Molecular Detection Systems
This study investigated the spectrum of chromosomal abnormalities in 325 leukemia patients and developed optimal profiles of leukemic fusion genes for multiplex RT-PCR. We prospectively analyzed blood and bone marrow specimens of patients with acute leukemia. Twenty types of chromosomal abnormalities were detected in 42% from all patients by commercially available multiplex RT-PCR for detecting 28 fusion genes and in 35% by cytogenetic analysis including FISH analysis. The most common cytogenetic aberrations in acute myeloid leukemia patients was PML/PARA, followed by AML1/MGT8 and MLL1, and in acute lymphoid leukemia patients was BCR/ABL, followed by TEL/AML1 and MLL1 gene rearrangement. Among the negative results for multiplex RT-PCR, clinically significant t(3;3)(q21;q26.2), t(8;14)(q24;q32) and i(17)(q10) were detected by conventional cytogenetics. The spectrum and frequency of chromosomal abnormalities in our leukemia patients are differed from previous studies, and may offer optimal profiles of leukemic fusion genes for the development of new molecular detection systems
A Proposal of New Reference System for the Standard Axial, Sagittal, Coronal Planes of Brain Based on the Serially-Sectioned Images
Sectional anatomy of human brain is useful to examine the diseased brain as well as normal brain. However, intracerebral reference points for the axial, sagittal, and coronal planes of brain have not been standardized in anatomical sections or radiological images. We made 2,343 serially-sectioned images of a cadaver head with 0.1 mm intervals, 0.1 mm pixel size, and 48 bit color and obtained axial, sagittal, and coronal images based on the proposed reference system. This reference system consists of one principal reference point and two ancillary reference points. The two ancillary reference points are the anterior commissure and the posterior commissure. And the principal reference point is the midpoint of two ancillary reference points. It resides in the center of whole brain. From the principal reference point, Cartesian coordinate of x, y, z could be made to be the standard axial, sagittal, and coronal planes
A Dispermic Chimera with Mixed Field Blood Group B and Mosaic 46,XY/47,XYY Karyotype
Chimerism in humans is a rare phenomenon often initially identified in the resolution of an ABO blood type discrepancy. We report a dispermic chimera who presented with mixed field in his B antigen typing that might have been mistaken for the B3 subtype. The propositus is a healthy Korean male blood donor. Neither his clinical history nor initial molecular investigation of his ABO gene explained his mixed field agglutination with murine anti-B. Chimerism was suspected, and 9 short tandem repeat (STR) loci were analyzed on DNA extracted from blood, buccal swabs, and hair from this donor and on DNA isolated from peripheral blood lymphocytes from his parents. The propositus' red blood cells demonstrated mixed field agglutination with anti-B. Exon 6 and 7 and flanking intronic regions of his ABO gene were sequenced and revealed an O01/O02 genotype. B allele haplotype-specific PCR, along with exon 6 and 7 cloning and sequencing demonstrated a third ABO allele, B101. Four STR loci demonstrated a pattern consistent with a double paternal chromosome contribution in the propositus, thus confirming chimerism. His karyotype revealed a mosaic pattern: 32/50 metaphases were 46,XY and 18/50 metaphases demonstrated 47,XYY
Development of a Novel Intraoperative Neuromonitoring System Using a Surface Pressure Sensor to Detect Muscle Movement: A Rabbit Model Study
Objectives False-negative or false-positive responses in intraoperative neuromonitoring (IONM) using electromyography (EMG) in thyroid surgery pose a challenge. Therefore, we developed a novel IONM system that uses a surface pressure sensor instead of EMG to detect muscle twitching. This study aimed to investigate the feasibility and safety of a new IONM system using a piezo-electric surface pressure sensor in an experimental animal model. Methods We developed the surface pressure sensor by modifying a commercial piezo-electric sensor. We evaluated the stimulus thresholds to detect muscle movement, as well as the amplitude and latency of the EMG and surface pressure sensor in six sciatic nerves of three rabbits, according to the stimulus intensity. Results The surface pressure sensor detected the muscle movements in response to a 0.1 mA stimulation of all six sciatic nerves. There were no differences in the thresholds of stimulus intensity between the surface pressure sensor and EMG recordings to detect muscle movements. Conclusion It is possible to measure the change in surface pressure by using a piezo-electric surface pressure sensor instead of EMG to detect muscle movement induced by nerve stimulation. The application of IONM using a piezo-electric surface pressure sensor during surgery is noninvasive, safe, and feasible. Measuring muscle twitching to identify the state of the nerves using the novel IONM system can be an alternative to recording of EMG responses
Specific Inhibition of Soluble γc Receptor Attenuates Collagen-Induced Arthritis by Modulating the Inflammatory T Cell Responses
IL-17 produced by Th17 cells has been implicated in the pathogenesis of rheumatoid arthritis (RA). It is important to prevent the differentiation of Th17 cells in RA. Homodimeric soluble γc (sγc) impairs IL-2 signaling and enhances Th17 differentiation. Thus, we aimed to block the functions of sγc by inhibiting the formation of homodimeric sγc. The homodimeric form of sγc was strikingly disturbed by sγc-binding DNA aptamer. Moreover, the aptamer effectively inhibited Th17 cell differentiation and restored IL-2 and IL-15 signaling impaired by sγc with evidences of increased survival of T cells. sγc was highly expressed in SF of RA patients and increased in established CIA mice. The therapeutic effect of PEG-aptamer was tested in CIA model and its treatment alleviated arthritis pathogenesis with impaired differentiation of pathogenic Th17, NKT1, and NKT17 cells in inflamed joint. Homodimeric sγc has pathogenic roles to exacerbate RA progression with differentiation of local Th17, NKT1, and NKT17 cells. Therefore, sγc is suggested as target of a therapeutic strategy for RA
Species Distribution and Susceptibility to Azole Antifungals of Candida Bloodstream Isolates from Eight University Hospitals in Korea
PURPOSE:
The incidence of Candida bloodstream infections (BSI) has increased over the past two decades. The rank order of occurrence and the susceptibility to antifungals of the various Candida species causing BSI are important factors driving the establishment of empirical treatment protocols; however, very limited multi-institutional data are available on Candida bloodstream isolates in Korea.
MATERIALS AND METHODS:
We investigated the susceptibility to azole antifungals and species distribution of 143 Candida bloodstream isolates recovered from eight university hospitals over a six-month period. Minimal inhibitory concentrations (MICs) of fluconazole, itraconazole, and voriconazole for each isolate were determined by the broth microdilution method of the Clinical and Laboratory Standards Institute (CLSI).
RESULTS:
The Candida species recovered most frequently from the blood cultures was C. albicans (49%), followed by C. parapsilosis (22%), C. tropicalis (14%), and C. glabrata (11%). The MIC ranges for the Candida isolates were 0.125 to 64 microg/mL for fluconazole, 0.03 to 2 microg/mL for itraconazole, and 0.03 to 1 microg/mL for voriconazole. Overall, resistance to fluconazole was found in only 2% of the Candida isolates (3/143), while the dose-dependent susceptibility was found in 6% (8/143). The resistance and dose-dependent susceptibility of itraconazole were found in 4% (6/143) and 14% (20/143) of the isolates, respectively. All bloodstream isolates were susceptible to voriconazole (MIC, < or = 1 microg/mL).
CONCLUSION:
Our findings show that C. albicans is the most common cause of Candida-related BSI, followed by C. parapsilosis, and that the rates of resistance to azole antifungals are still low among bloodstream isolates in Korea.ope
- …