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IL-17 produced by Th17 cells has been implicated in the pathogenesis of rheumatoid

arthritis (RA). It is important to prevent the differentiation of Th17 cells in RA. Homodimeric

soluble γc (sγc) impairs IL-2 signaling and enhances Th17 differentiation. Thus, we

aimed to block the functions of sγc by inhibiting the formation of homodimeric sγc.

The homodimeric form of sγc was strikingly disturbed by sγc-binding DNA aptamer.

Moreover, the aptamer effectively inhibited Th17 cell differentiation and restored IL-2

and IL-15 signaling impaired by sγc with evidences of increased survival of T cells.

sγc was highly expressed in SF of RA patients and increased in established CIA mice.

The therapeutic effect of PEG-aptamer was tested in CIA model and its treatment

alleviated arthritis pathogenesis with impaired differentiation of pathogenic Th17, NKT1,

and NKT17 cells in inflamed joint. Homodimeric sγc has pathogenic roles to exacerbate

RA progression with differentiation of local Th17, NKT1, and NKT17 cells. Therefore, sγc

is suggested as target of a therapeutic strategy for RA.

Keywords: soluble common gamma chain, aptamer, collagen-induced arthritis, Th17, IL-2

INTRODUCTION

The common gamma chain (γc) is a cytokine receptor subunit that is shared by the γc family
cytokines and is composed of IL-2,−4,−7,−9,−15, and−21 (1). It has been described that the
signals of γc cytokines are essential to the proliferation, differentiation, homeostasis, and activities
of cells in the innate and adaptive immune systems (2, 3), showing that the genetic mutations or
deficiencies of γc result in fetal immunodeficiency disorder in human and mice (4, 5). A soluble
form of γc (sγc) has recently been reported, showing that sγc is generated by alternative splicing
and plays an antagonistic role in γc cytokine signaling (6). The secreted sγc forms a homodimeric
structure that binds to IL-2Rβ with a higher affinity than the monomer sγc (6). However, the
dimerization mechanisms of sγc have not been fully elucidated. IL-2 has important roles in
controlling the balance between helper T 17 (Th17) cells and regulatory T (Treg) cells. Although
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IL-2 is essential for the differentiation and functions of Treg
cells (7, 8), the Th17 differentiation is negatively regulated
by IL-2 (9, 10). IL-2 deficiency leads to increased pro-
inflammatory Th17 cell populations (9), playing pivotal roles in
the pathogenesis of several autoimmune diseases, including RA,
which is characterized by chronic inflammation of the joints and
irreversible joint damage. The detection of Th17 cell population
in peripheral blood and SF of RA patients can be an indicator
of inflammatory activity (11–13). Thus, the regulation of IL-2
signaling will provide an important clue for the management of
RA pathogenesis.

IL-17 has been demonstrated as a key factor in collagen-
induced arthritis (CIA) (14). IL-17 leads to the upregulation of
receptor activator of nuclear factor kappa-B ligand (RANKL),
activating osteoclast, and resulting in bone resorption (15).
Moreover, it also induces synovial macrophages to produce TNF-
α and IL-1 involved in the formation of osteoclasts. IL-17 is
mainly produced by Th17 cells, but is also produced by other
types of immune cells, including CD8+ T cells (16), innate
lymphoid cells (ILCs) (17), and natural killer T cells (NKT) (18).
Several studies have reported that NKT cells had a pathogenic
role in CIA mouse models with an increased number of IL-17
producing NKT cells (19–21).

Since the sγc promotes the differentiation of Th17 cells by
inhibiting IL-2 signaling, it can also exacerbate the severity
of Th17 cell-mediated inflammation, as demonstrated in
experimental autoimmune encephalomyelitis (EAE) model (6).
Indeed, sγc overexpressing and sγc-deficient mice showed a
conflicting prognosis of EAE disease (6). Importantly, it has
been previously reported that the level of sγc expression is
highly detected in autoimmune diseases, including inflammatory
bowel disease (IBD) (22) and RA (23, 24). Thus, we thought
that the high level of sγc may contribute to the aggravation
of inflammatory autoimmune diseases and wanted to target
the dimerization of sγc to control its function by introducing
an aptamer.

Aptamer is a small, single-stranded (ss) DNA or RNA
oligonucleotide and an alternative strategy for binding to
specific target molecules with high affinity and specificity (25).
Aptamers have striking advantages over monoclonal antibodies,
in that they are stable, chemically synthesized at a low
cost, and have no evidence of significant immunogenicity,
with a high binding affinity (25, 26). Given its wide array
of advantages, it is considered a prospective candidate for
a novel diagnostic or therapeutic approach to cancer, viral
infection, and inflammatory diseases (27). Aptamers are
generally obtained by a standard procedure; the systematic
evolution of ligands by exponential enrichment (SELEX) to select
high affinity aptamers that are specific for target molecules or
cells (25, 28).

Here, we showed that the generation of sγc homodimer is
elicited by a disulfide bond and developed specific aptamers that
inhibit the dimerization of sγc. Moreover, we found that the
enhanced level of sγc in CIA mice promoted the differentiation
of Th17, NKT1, and NKT17 cells; however, these pathogenic
roles of sγc were suppressed by sγc-aptamer. Taken together with
the elevated level of sγc in human RA patients, these studies

suggested that the homodimer form of sγc may contribute to
the exacerbation of the pathogenesis of CIA and blockade of the
function of sγc conceivably improves RA.

MATERIALS AND METHODS

Patients
Consecutive patients clinically diagnosed with rheumatoid
arthritis (RA) or osteoarthritis (OA) were included. All
patients with RA (n = 10) met the 2010 American College
of Rheumatology/European League Against Rheumatism
classification criteria for rheumatoid arthritis (29) and all
patients with OA (n = 9) fulfilled the clinical criteria of the
American College of Rheumatology for knee OA (30). For
RA patients, the mean (±SD) age was 58.6 (±11.1) years
and all were female. All patients with RA were treated with
at least one disease modifying anti-rheumatic drugs. The
study was approved by the Research and Ethical Review
Board of the Pusan National University (PNU) Hospital (IRB
1608-015-044). All study subjects provided written informed
consent in accordance with the principles of the Declaration
of Helsinki.

Animals
DBA/1 mice were obtained from Orient Bio, South Korea. All
animal experiments and protocols were approved by the PNU
Institutional Animal Care and Use Committee (PNU-2017-1605)
and were housed in a specific pathogen-free animal facility at
PNU School of Medicine.

Modified Systematic Evolution of Ligands
by Exponential Enrichment (SELEX)
The advanced SELEX technology was used as previously
described (31). In brief, aptamers were selected from
a ssDNA library containing a 40-nucleotide randomized
region, in which 5-(N-benzylcarboxyamide)-20-deoxyuridine
(Bz-dU) or 5-(N-naphthylcarboxyamide)-20-deoxyuridine
(Nap-dU) was substituted for dT. The oligonucleotides
contained a central randomized region of 40 nucleotides,
which were flanked by two conserved flanking regions
with 17 nucleotides (5′-CGAGCGTCCTGCCTTTG-40N-
CACCGACAGCCACCCAG-3′). The SELEX process was
performed at 37◦C. A mixture of aptamer library dissolved in
a buffer solution was heated at 95◦C for about 5min and then
was slowly cooled to 37◦C for re-folding. The aptamer library
was pre-incubated with Hexa-his tag magnetic bead (Invitrogen)
to eliminate non-specific binder. In addition, the aptamer
library binding control γc-extracellular domain (ED) was also
removed from each pool by negative selection. The aptamer
library in supernatant was incubated with purified sγc (including
the C-terminal CLQFPPSRI), and then the target protein was
isolated by Dynabeads (ThermoFisher). Aptamers bound to
the target protein were eluted and amplified via PCR reaction.
The resulting aptamers were used in the next SELEX round.
Truncated or modified aptamers with 5′-PEG and 3′-inverted dT
were obtained from Aptamer Science Inc.
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Cloning and Sequencing of Selected
Aptamers
After 8 rounds of SELEX, the eluted aptamers were amplified
by QPCR using primers, and then cloned into TA cloning Kit
and the cloned parts were sequenced (Solgent). Sequences of
the selected aptamers were aligned using the “aptamer motif
searcher,” an in-house program of POSTECH Aptamer Initiative,
and a pattern analysis was performed. The secondary structures
of aptamers were predicted by the mfold Web Server (http://
unafold.rna.albany.edu).

Binding Affinity Assays
The aptamer–protein equilibrium dissociation constants
(Kd) were determined via the nitrocellulose-filter binding
method (32). For all binding assays, aptamers were
dephosphorylated using alkaline phosphatase, 5-end labeled
using T4 polynucleotide kinase (New England Biolab) and
[32P]-ATP (Amersham Pharmacia Biotech). Direct binding
assays were carried out by incubating a 32P-labeled aptamer
at a concentration of <10 pM and protein at concentrations
ranging from 10 pM to 100 nM in a selection buffer. The fraction
of bound aptamer was quantified with a PhosphorImager (Fuji
FLA-5,100 Image Analyzer). Raw binding data were corrected
for non-specific background binding of radiolabeled aptamer to
the nitrocellulose filter.

Immunoprecipitation and Western Blot
The sγc in supernatants of cultured cells were
immunoprecipitated with α-mouse IL-2Rγ antibody (R&D
systems) and protein A/G agarose beads (Santa Cruz
Biotechnology). Immunoprecipitates were resolved by SDS-
PAGE (Novex) under reducing by dithiothreitol (DTT) or
non-reducing conditions and transferred to a polyvinylidene
difluoride (PVDF) membrane (Amersham Biosciences). Blots
were incubated with biotinylated α-mouse IL-2Rγ antibody
(R&D systems), followed by HRP-conjugated streptavidin
(BioLegend). The membranes were developed by enhanced
chemiluminecence (ECL) reagents (GE Healthcare). The bands
were detected using LAS-3000 Imaging system (Fujifilm).

Plasmid Construction and Mutagenesis
The modification of sγc gene was performed by designing the
reverse primers in two ways. One was to alter the amino acid
(a.a.) sequence of cysteine (Cys) to alanine (Ala) at C-terminal
residues (sγcC255A); the other was to delete the a.a. sequences
of all 9 proteins at C-terminal residues (sγc1255-263). Primer
sequences are as follows; 5′-ATG TTG AAA CTA TTA TTG
TCA-3′ for sγc forward, 5′-GAT TCT TGA TGG GGG GAA-3′

for sγc reverse, 5′-GAT TCT TGA TGG GGG GAA TTG GAG
GGCTTC-3′ for sγcC255A reverse, 5′-TTCCTCTACAGTATG
ACT-3′ for sγc1255-263 reverse.

Transient Transfection
Human embryonic kidney (HEK) 293T cells were used for
transient transfection. The respective DNA constructs were
mixed gently with LipofectamineTM 2000 (Invitrogen) and
incubated at room temperature (RT) for 15min. Themixture was

incubated on HEK 293T cells for 6 h. In order to examine an
effect of aptamers, full length, truncated, or scramble aptamers
were treated 6 h after transfection.

In vitro Stimulation With IL-2 or IL-15
LN T cells were incubated in vitro with 10 ng/ml recombinant
IL-2 (Peprotech) or 20 ng/ml recombinant IL-15 (Peptrotech)
in the presence of sγc, with or without sγc-aptamer. LN T cells
were stained for intracellular Bcl-2 expression, using the Foxp3
staining kit in accordance with the manufacturer’s instructions
(eBioscience). Active-caspase3 induction was determined
using CaspGLOWTM fluorescein active-caspase3 staining kit
(eBioscience).

In vitro T Cell Differentiation
For in vitro differentiation, the condition media were generated
in the following manner: IL-2 (20 ng/ml; Peprotech), IL-12
(100 ng/ml; eBioscience), and α-IL-4 (10 ug/ml; BioLegend) for
Th1. IL-2 (20 ng/ml; Peprotech), IL-4 (100 ng/ml; Peprotech) and
α-IFNγ (10 ug/ml; BioLegend) for Th2. IL-6 (30 ng/ml; BD),
TGF-β1 (50 ng/ml; Peprotech), α-IFNγ (10 ug/ml; BioLegend)
and α-IL-4 (10 ug/ml; BioLegend) for Th17. 100 nM of respective
aptamers were treated in differentiation of CD4+ T cells.

Flow Cytometry
Antibodies with the following specificities were used for staining:
CD4 (GK1.5) from eBioscience; TCRβ (H57-597), CD8 (53-6.7),
IFNγ (XMG1.2), IL-4 (11B11), Bcl-2 (BCL/10C4), T-bet (4B10),
PLZF (9E12) from BioLegend; IL-17 (TC11-18H10) from BD
Bioscience. Fluorochrome-conjugated CD1d tetramers loaded
with PBS-567 were obtained from NIH tetramer facility (Emory
University, Atlanta, GA). Intranuclear PLZF and T-bet were
detected using the Foxp3 staining kit as the manufacturer’s
instructions (eBioscience).

ELISA
The sγc level in serum of mice were detected by a sandwich
ELISA with γc-specific polyclonal antibody (R&D system) as
capture antibody and biotin-conjugated γc-specific monoclonal
antibody (R&D system) as detection antibody. The human sγc
level from SF of RA or OA patients were measured with human
γc-specific monoclonal antibody (R&D Systems) as capture
antibody and biotin-conjugated human γc-specific polyclonal
antibody (R&D Systems) as detection antibody. Concentration of
sγc was calculated using the standard curve of recombinant sγc
protein.

Induction of CIA and Aptamer Treatment in
vivo
Mice were injected intradermally (i.d.) at the base of the tail with
chicken type II collagen (CII, Chondrex) emulsified in Freund’s
complete adjuvant (CFA). The immunized mice were boosted
at 2 weeks after the initial immunization. Arthritis severity was
scored from 0 to 4, with 0 indicating no evidence of erythema
and swelling; 1 indicating mild erythema and swelling confined
to the tarsals or ankle joint; 2 indicating mild erythema and
swelling from the ankle to the tarsals; 3 indicating moderate
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erythema and swelling from ankle to the tarsals; and 4 indicating
severe erythema and swelling encompassing the ankle, foot, and
digits. The scores of all four paws were summed to obtain the
arthritis score. For the treatment of aptamer, mice were injected
intraperitoneally (i.p.) with PEG and idT-conjugated aptamer
(PEG-aptamer) 6 times at boosting point (BP) or after onset of
disease (AO).

Histological Analysis
Mouse limbs were removed, fixed in 10% neutral buffered
formalin, and decalcified. The decalcified limbs were embedded
in paraffin and sections were prepared. The sections were stained
with H&E and Safranin O to measure the inflammation and the
loss of proteoglycans using standard procedures, respectively.
Image analysis was performed by the Axio Scan Z1 (Carl Zeiss
MicroImaging, Germany). H&E and safranin O staining was
scored with a semiquantitative scoring system from 0 to 3, where
0 means no inflammation and 3 indicates severe inflammation
for H&E and 0 indicates no proteoglycan loss and 3 represents
complete loss of proteoglycan for safranin O.

Micro-CT
Three-dimensional reconstruction images of pre-CIA and
CIA-established mice were obtained by microfocal computed
tomography (micro-CT, NFR Polaris-G90) at the day 33 of
disease, according to the manufacturer’s instructions.

Statistical Analysis
Differences between the groups were examined with Student’s
two-tailed t-test or one-way ANOVA using Prism software
(GraphPad). P-values of <0.05 were considered statistically
significant. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ns
(not significant).

RESULTS

sγc Specific Binding Aptamers Are
Selected by Modified SELEX
According to a previous study (6), sγc is present in the disulfide-
linked homodimeric form, which is more functional than the
monomeric form. Since sγc is generated by alternative splicing, it
has a new C-terminal epitope, composed of 9 a.a., including Cys
residue (6). It has been known that Cys residues are required to
form disulfide bonds (33). To investigate whether Cys residues
are essential in formation of homodimeric sγc, DTT was serially
treated. The formation of dimeric sγc was dose-dependently
inhibited, and the monomeric forms were increased by DTT
(Figures 1A,B). To further confirm, we generated two mutant
constructs: the Cys is substituted with Ala (sγcC255A); and 9 a.a.
are totally deleted (sγc1255-263), as shown in Figure 1C. We
found that sγcC255A and sγc1255-263 were not expressed as
dimer forms, whereas the WT sγc was expressed as dimer forms
and monomerized by DTT (Figure 1D). These data indicate
that the dimerization of sγc requires Cys residues. To modulate
the functional activity of sγc, we targeted 9 a.a. of sγc with
specific aptamers to disrupt the formation of homodimeric
sγc. Specific aptamers of 9 a.a. was screened by the SELEX, as

described in Figure 1E. 3 ssDNA Bz-aptamers (Figure 1F) and
5 ssDNA Nap-aptamers (Figure 1G) were selected with low Kd

and high Bmax value, suggesting maximum binding to the target
proteins (Table S1).

sγc Inhibiting Aptamer (siAp) Blocks
Dimerization of sγc and Impairs Th17
Differentiation
First, to test which aptamers effectively inhibit the dimerization
of sγc, we treated the aptamer candidates to sγc-producing
HEK293T cells. We found that siAp3 (Figures 2A,B),
siAp7 and siAp8 (Figures 2C,D) efficiently disturbed the
formation of dimeric sγc. Since sγc enhanced Th17 cell
differentiation of CD4+ T cells (6), the functional activity
of siAps was tested in Th17 differentiation. siAp3 did not
affect Th17 differentiation. On the other hand, siAp7 and
siAp8 significantly inhibited Th17 cell differentiation, whereas
there were no changes in Th1 and Th2 differentiations
(Figures 2E,F). These results indicate that siAp7 and siAp8 are
effective aptamers for the suppression of sγc dimerization and
Th17 differentiation.

Core Sequences of siAp Are Sufficient to
Interrupt Dimeric Formation of sγc
Aptamer has target-non-specific arms and target-specific core
sequences (25). With the sequences of siAp7 and siAp8
(Figure 3A), we predicted the secondary structures (Figure 3B).
Since the stem-loop structures organized by core sequences
are generally functional (34), we examined the functional
capacity of core sequences in dimeric formation of sγc.
We generated the truncated forms of siAp (core-siAp) with
core sequences and tested the antagonistic capability of core-
siAp compared with full-siAp. Full-siAp7 only induced the
monomerization of sγc at a concentration of 100 nM (Figures 3C
top,D). Although the formation of homodimeric sγc was
partially impeded at 50 nM core-siAp7 (Figure 3C bottom),
it was not significant (Figures 3C,D). Core-siAp8 was more
functional than full-siAp8 with the fact that homodimeric sγc
was completely monomerized in 50 nM core-siAp8 compared
with full-siAp8 (Figures 3E,F). In comparison of siAp7 and
siAp8, siAp8 was more functional than siAp7, as shown that
siAp8 more effectively induced monomerization of sγc even in
lower dose than siAp7 (Figures 3D,F). Collectively, we found
that the core-siAp is sufficiently efficient in suppressing the
formation of homodimeric sγc, and siAp8 is more effective
than siAp7.

Impaired IL-2 and IL-15 Signaling by sγc Is
Restored by siAp8
sγc interferes with IL-2 and IL-15 signaling in CD8+ T cells
(6, 35, 36). Thus, we assessed the effect of siAp8 on IL-2
or IL-15 signaling in CD8+ T cells with anti-apoptotic Bcl-2
expression (Figures 4A,B). Bcl-2 expression upregulated by IL-2
(Figure 4A) or IL-15 (Figure 4B) was decreased in the presence
of sγc and was rescued by siAp8 treatment (Figures 4A,B). Since
reduced Bcl-2 expression is related to enhanced susceptibility
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FIGURE 1 | Cys residues in dimerization of sγc and selection of aptamers by SELEX. (A) Culture supernatant of sγc expressing HEK293T cells were

immunoprecipitated and immunoblotted for sγc proteins using α-γc-ED. Immunoprecipitates were reduced by DTT in a dose-dependent manner. Relative expression

of monomer and dimer sγc of (A) was demonstrated in (B). (C) Constructs of sγc, sγcC255A and sγc1255-263 were generated as depicted. (D) Culture supernatant

of sγc expressing HEK293T cells were immunoprecipitated and immunoblotted for sγc proteins using α-γc-ED. Immunoprecipitates were resolved by SDS-PAGE

under reducing (DTT+) or non-reducing conditions (DTT-). The supernatant of HEK293T cells (Mock) was used as negative control. (E) Scheme of selection of

9 a.a.-specific aptamers by SELEX. (F,G) Binding affinity assays were performed with Bz-dU (F) or Nap-dU (G) aptamers and the indicated concentration of sγc

protein. D, dimer. M, monomer.

to apoptosis and promoted caspase3 activity was indicative
of increased cell death (37, 38), we further confirmed the
effect of siAp8 with EtBr and active-caspase3 assay. Indeed,
exogenous sγc promoted cell death (the EtBr+active-caspase3+

cells) in the presence of IL-2 (Figure 4C) or IL-15 (Figure 4D).
siAp8 treatment, however, impeded the effect of sγc as shown
by a significantly decreased frequency of the EtBr+active-
caspase3+ cells (Figures 4C,D). These results indicated that

siAp8 effectively suppresses the inhibitory functions of sγc in IL-2
and IL-15 signaling.

siAp8 Ameliorates Pathogenesis of CIA
sγc is abundant in the serum and synovium of RA patients
(23, 24). We confirmed that the sγc levels in CIA mice and
RA patients are increased in the serum and SF (Figure 5A). sγc
is expressed in SF of 50% of RA patients compared with that
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FIGURE 2 | Effect of siAps in the dimerization of sγc and Th17 cell differentiation. (A–D) Culture supernatant of sγc expressing HEK293T cells that was treated with

aptamers were immunoprecipitated and immunoblotted for sγc proteins using α-γc-ED. Representative data of three independent experiments are shown for Bz-dU

(A) and for Nap-dU (C). Bar graphs show a summary of three independent experiments of the relative expression of monomeric and dimeric sγc for Bz-dU (B, means

and SEM) and for Nap-dU (D, means and SEM). Scramble aptamer was used as the negative control. (E,F) Naïve CD4+ T cells were cultured with siAps under Th

differentiation conditions. IFNγ, IL-4, and IL-17 expressions were assessed by intracellular staining. (E) Contour plots are representative of three independent

experiments. (F) Bar graphs show a summary of three independent experiments (means and SEM). *P <0.05; **P <0.01. Scr, scramble. D, dimer. M, monomer.

of OA patients. Among RA patients, three patients have high
concentration of sγc and two patients have low concentration
of sγc (Figure 5B and Table S2). Next, we administrated PEG-
siAp8 to CIA mice at BP or AO, as depicted in Figure 5C.
The injection of PEG-siAp8 at BP significantly ameliorated CIA
progression with reduced joint swelling; however, similar CIA
progress in mice treated with PEG-siAp8 at AO was observed
as Veh control mice (Figures 5D,E top). According to the
histological analysis, treatment of PEG-siAp8 at BP reduced
infiltration of cells, cartilage damage, and bone erosion, whereas
PEG-siAp8 at AO failed to prevent severe inflammation and
cartilage damage (Figures 5E,F). In draining LN (dLN), there
were no significant differences in frequencies of IFNγ+ or IL-4+

T cells, however, the frequency of IL-17+ T cells were notably
increased (Figures S1A,B). Moreover, the frequencies of IFNγ+

or IL-17+ T cells in spleen (SP) were similar among all groups

(Figures S1C,D). While frequency and number of IL-17+ T cells
were increased in the inflamed joint of CIA mice with Veh or
PEG-siAp8 at AO, the frequency and number were dramatically
decreased in PEG-siAp8 at BP group (Figures 6A,C). PEG-
siAp8 did not influence the frequency and number of IFNγ+

T cells (Figures 6A,B). To evaluate the involvement of NKT
cells during CIA development, we checked NKT cells in SP
and found that they were not different between naïve and CIA
mice (Figures S2A,B). We profiled the subsets of NKT cells with
T-bet vs. PLZF and found that PLZF−T-bet+ NKT cells were
reduced after CIA induction and PLZF−T-bet− NKT cells were
increased after CIA induction (Figures S2C,D). In the inflamed
joint, frequency and number of NKT cells were significantly
increased in CIA mice with Veh or PEG-siAp8 at AO; however,
the administration of PEG-siAp8 at BP efficiently decreased
the frequency and number of NKT cells (Figures 6D,E). The
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FIGURE 3 | Sequence analysis of siAps. (A,B) The secondary stem-loop motifs were predicted with the full sequences of siAp7 and siAp8. Core sequences were

marked with black brackets in (A,B). (C–F) HEK293T cells were transfected with sγc construct. After 6 h of transfection, the media was changed with full-siAp or

core-siAp containing media. Relative expression of monomeric and dimeric sγc was detected by immunoprecipitation and immunoblot assay. Representative data of

three independent experiments are shown for siAp7 (C) and for siAp8 (E). (D,F) Line graph shows a summary of three independent experiments of the ratio of

monomeric sγc against dimeric sγc (mean and SEM). Scramble aptamer was used as the negative control. *P < 0.05. D, dimer. M, monomer.

frequency of IFNγ+ NKT cells was not different among the joint
of all groups but the frequency of IL-17+ NKT cells was increased
in all CIA mice compared with naïve mice (Figures 6F,G).
Moreover, the numbers of IFNγ+ and IL-17+ NKT cells were
enhanced in the inflamed joints of CIA mice with Veh or
PEG-siAp8 at AO, but they were reduced by PEG-siAp8 at BP
(Figures 6F,G). These results indicate that sγc has heterogeneous
effects on CIA progress and the blocking point of IL-2 signaling
is important in reducing the pathogenesis of CIA.

DISCUSSION

We investigated the mechanism of generating homodimeric
sγc and the physiological roles of sγc in autoimmune disease,
especially in RA. Unlike OA synovial tissues, the RA tissues
contain high concentration of sγc (23). We demonstrated that
sγc deficiency ameliorates clinical symptoms of EAE, Th17
cell-mediated autoimmune diseases (6). Since IL-17 is involved
in the pathogenesis of RA (39), we expected that sγc would
certainly play a role in autoimmune arthritis. We first identified
a mechanism whereby the homodimeric sγc is formed by

disulfide bonds between the Cys residues. Thus, we targeted
the 9 a.a. to block the formation of homodimeric sγc with
aptamers. We developed the most effective aptamer, siAp8,
based on interrupting activity of dimeric formation and Th17
differentiation. Effect of the aptamer was confirmed in IL-2 and
IL-15 signaling, as shown that their signals dampened by sγc are
significantly restored by siAp8. To apply siAp8 to in vivo model,
siAp8 was modified with 5’-PEG to maintain their circulation
in the blood and to slow renal clearance (40), together with
idT-3’ to improve nuclease resistance (41). PEG-siAp8 treated
at BP effectively improved clinical severity and pathology with
decreased local Th17 cells and NKT cells in the joint. On the
other hands, PEG-siAp8 applied at AO had no any beneficial
effects on the pathogenesis of CIA. These different results based
on time points of PEG-siAp8 administration implied that there
may be a critical time point when sγc involves in the CIA
pathogenesis. The podoplanin+ Th17 cells induce the formation
of ectopic lymphoid-like structures (ELS) at inflamed sites of
autoimmune diseases, such as RA (42), multiple sclerosis (43),
systemic lupus erythematosus (44), and myasthenia gravis (45).
ELS features the aggregates of T and B cells, formation of
follicular DC networks with maintained or exacerbated disease
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FIGURE 4 | Effect of siAp8 in the IL-2 or IL-15 signaling. (A,B) Intracellular Bcl-2 expression in CD8+ LNT cells stimulated for 3 days with IL-2 (A) or IL-15 (B) in the

presence of recombinant sγc, plus siAp8. Histograms show representative results from three independent experiments (left). Numbers on the solid line in the

histograms indicates MFI and percentage gated on. Bar graphs show a summary of three independent experiments (Right, mean and SEM). (C,D) CD8+ LNT cell

survival upon in vitro IL-2 (C) or IL-15 (D) stimulation in the presence of recombinant sγc, plus siAp8. Cell viability was determined by EtBr and active-caspase3

staining. Contour plots are representative of three independent experiments (left). Bar graphs show a summary of three independent experiments (right, mean and

SEM). **P < 0.01; ***P < 0.001. Veh, vehicle.

severity (46).When disease is boosted in CIAmodel, autoreactive
T cells are activated and then sγc levels increase in the inflamed
joints. These environments at BP induce enhancement of Th17
differentiation, resulting in promotion of ELS formation and CIA
progress. Thus, it was thought that CIA progress was dramatically
prevented by blocking of sγc at BP, not at AO, since the function
of sγc is blocked before Th17 differentiation and ELS formation.
However, when ELS is already orchestrated in the inflammatory
sites, γc cytokines are required for the growth of lymphocytes.

Thus, we thought that blockade of sγc functions at AO would
not affect ELS formation, resulting in induction of CIA progress.
Further studies are required to confirm whether the formation of
ELS is affected by sγc.

Role of NKT cells in RA is controversial. Although many
studies indicated that NKT cells have beneficial effects in
alleviating RA development (47–49), several studies reported that
NKT cells have pathogenic roles in inducing severe symptoms of
RA (19–21). In our results, disturbed sγc functions resulted in
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FIGURE 5 | sγc expression in RA patients and CIA models, and effect of PEG-siAp8 in CIA progress. (A) Serums (left) or SF (right) were harvested at the indicated

days and assessed for sγc by ELISA. (B) SF from patients of RA (n = 10) or OA (n = 9) were harvested and assessed for sγc by ELISA. (C) Injection of PEG-siAp8 to

CIA mice were performed as shown. Red arrows indicate administration of PEG-siAp8 at BP, and blue arrows indicate administration of PEG-siAp8 at AO. (D) CIA

was induced in DBA/1 WT mice as depicted in (C). Administration points of PEG-siAp8 at BP or AO was indicated as red or blue arrows, respectively. CIA clinical

scores are representative of two independent CIA experiments, each with five mice per group. (E) Representative photographs of the hind paws (Top). Representative

joint tissue from the hind paws stained with haematoxylin and eosin (H&E) and with safranin O (Middle). Representative three-dimensional reconstruction of the hind

paw assessed by micro-CT (Bottom). Arrows indicate destructed bones. (F) Bar graphs show a summary of two independent experiments of (E), each with three

mice per group (mean and SEM). *P < 0.05; **P < 0.01; ***P < 0.001. Veh, vehicle. Pre-CIA, Naïve DBA mice.

reduced frequency and number of NKT cells, especially IL-17+

NKT cells in the CIA joints. However, NKT cells in the spleen
were not different between all CIA groups, implying that NKT
cells are locally affected by sγc. One possible situation is that
reduction of Th17 cells by impaired sγc would form suboptimal
ELS, resulting in induction of suboptimal interaction between
immune cells, including NKT cells and antigen presenting cells
(APCs). Since interaction with APCs is important in activation
of NKT cells (50), the suboptimal environment insufficiently
activate NKT cells, resulting in ameliorating CIA development.
Once ELS formation is established, the regulation of sγc function
might be beyond its ability to manage CIA progress. Thus,
suboptimal differentiation of Th17 cells in CIA mice with PEG-
siAp8 treatment at BP would negatively affect activation of NKT
cells through the impaired formation of ELS, indicating that
sγc would be indirectly involved in differentiation of NKT cells.
Since IL-2 promotes cytokine productions of NKT cell; however,
IFNγ production is reduced in long-term exposure of IL-2, unlike
IL-4, which is steadily enhanced (51), the direct involvement
of sγc in activation of NKT cells could not be excluded.

Moreover, NKT17 cells, not NKT1, developed properly without
IL-15 (52, 53). Further study evaluating the detail mechanisms
is required.

Based on the detection of both monomeric and dimeric
sγc in the medium, the in vitro inhibitory effect of aptamer
in dimeric formation of sγc and low capacity of aptamer in
intracellular penetration (25), our results and previous report
suggest that sγc is dimerized by disulfide bond presumably in
the extracellular space or matrix. Although disulfide bond is
catalyzed by protein disulfide isomerase (PDI) mainly in the
endoplasmic reticulum (ER), previous studies showed that PDI
is also secreted (54) and regulates disulfide bond modification of
proteins, integrin (55, 56) and thrombin complexes (57, 58) in
extracellular milieu. These reports reinforce our hypothesis about
dimeric formation of sγc in extracellular environment.We do not
exclude other mechanisms, but based on our findings and recent
studies (55), we propose that dimeric sγc is formed by disulfide
bond via catalytic activity of secreted PDI and the dimerization
is inhibited by aptamer in extracellular space. Future studies
on post-translational mechanisms of sγc are definitely required,
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FIGURE 6 | Effect of PEG-siAp8 in Th17 cells and NKT cells. The infiltrating cells were isolated from inflamed joints after 34 days of CIA induction. (A–C) IFNγ and

IL-17 expressions of joint were assessed by intracellular staining. (A) IFNγ and IL-17 profiles are representative of two independent experiments. Bar graphs show a

summary of the frequency and number of IFNγ+ (B) or IL-17+ (C) CD4+ T cells of two independent experiments, each with three mice per group (mean and SEM).

(D) Contour plots of NKT cells in the inflamed joint are representative of two independent experiments. (E) Frequency and numbers of NKT cells are summarized. Bar

graphs show a summary of the frequency (left) and number (right) of NKT cells of two independent experiments, each with three mice per group (mean and SEM).

(F,G) IFNγ and IL-17 expressions of NKT cells were assessed. Bar graphs show a summary of the frequency (left) and number (right) of IFNγ+ (F) or IL-17+ (G) NKT

cells of two independent experiments, each with three mice per group. *P < 0.05; **P < 0.01; ***P < 0.001. Veh, vehicle. Pre-CIA, Naïve DBA mice.

because these results will provide us crucial information on the
development of more effective regulators of sγc function.

In summary, our results demonstrated that homodimeric
sγc is formed by Cys residues of the new 9 a.a. epitopes. We
introduce a sγc-specific aptamer which blocked the formation
of homodimeric sγc and successfully impaired its functions.
Impaired sγc by siAp8 mitigated the progression of CIA with
low differentiation of local Th17, NKT1, and NKT17 cells.
Taken together, our results suggest that homodimeric sγc would

be a critical pathogenic molecule in the progression of RA.
Interestingly, we also identified such alternatively spliced sγc
transcripts in human T cells (6), indicating an evolutionarily
conserved mechanism of sγc expression and regulation. In fact,
alternative splicing of γc in both humans and mice creates a
C-terminal Cys residue that promotes the dimerization of sγc.
Therefore, a blockade of homodimeric sγc formation and its
function might be a novel clinical therapeutic approach to treat
RA and other inflammatory autoimmune diseases.
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