36 research outputs found

    Construction of Inchon International Airport

    Get PDF
    To face with the increasing the air transportation in Korea, the construction of Inchon International Airport is underway in the bay of Inchon on the reclaimed land. The construction project has begun since the end of 1992, and will be completed by the end of year 2000. This paper presents the general plan of project, site development, soil improvement work, transportation system, and construction budget and fund

    A Case Study of Characteristics of Damages Caused by Typhoon EWINIAR 2006 in South Korea

    Get PDF
    During recent years, the climate of Korea has clearly been divided between dry season and rainy season due to the global warming and other reasons, and a record breaking rain is falling every year. The mountain slopes in Korea receives significant damage generally during the seasons of high rain front and typhoon. In 2006, the rainy season started in July and Typhoon EWINIAR which hit South Korea between July 26 and 28 caused significant damage to various slopes and roads. This paper presents a case study of the damages and characteristics of the damages to cut slopes, fill slopes, and roads caused by the concentrated heavy rains for 3 days in the regions of Inje and YangYang

    Uniform Hazard Response Spectra of Korea Considering Uncertainties in Ground Properties

    Get PDF
    The seismic site coefficients derived deterministically are often used with ground motion parameters determined by probabilistic seismic hazard analysis in construction of the design response spectrum. There is, therefore, an inherent incompatibility between two approaches. New methods have been developed to resolve this incompatibility by developing probabilistic seismic site coefficients. In such approaches, the uncertainties in the properties of the ground were not systematically accounted for due to lack of measurements of the ground. In this study, an integrated probabilistic seismic hazard analysis which can quantify the nonlinear seismic site effects and account for the uncertainties in soil properties is developed and used to generate the uniform hazard response spectra in Korea. The procedure used an extensive database of measured shear wave velocity profiles and dynamic curves, which included more than 114 shear wave velocity profiles and more than 15 dynamic curves. The calculated uniform hazard response spectra were compared to the design spectra. Comparisons show significant discrepancy between two spectra, and highlight the need to revise the current design guideline

    A Case Study on Safe Blast Design with Vibration Analysis

    Get PDF
    Safe delicacy blasting is necessarily to decrease safe problems resulting from blasting but if designs to consider only safety, it is a problem not to ensure economical gains because the effect of blasting is decreased. Therefore, blasting vibration must be predicted to consider given circumstances and ground conditions before blasting work, and then a design based on predicted result must be done. In this study, the testing blasting was carried out in two fields within a country, and then measured data for testing blasting were collected. The effect for blasting vibration was analyzed as the property of distance, charging gunpowder capacity, surrounding conditions, and measured points. The test results were performed by back-analysis, and compared with previous research results. Therefore, it will be proposed an effective prediction and design

    Dynamic Loading Induced Settlement of Strip Foundation on Geogrid-Reinforced Clay

    Get PDF
    Laboratory model tests to determine the load. The variation of the maximum permanent supported by geogrid-reinforced saturated clay and subjected to a low-frequency cyclic load are presented. In conducting the test, the foundation was initially subjected to an allowable static load. The cyclic load was then super-imposed over the static permanent settlement of a surface strip foundation settlement with the intensity of the static load and the intensity of the amplitude of the cyclic load are also presented

    De Novo Design and Synthesis of Ultra-Short Peptidomimetic Antibiotics Having Dual Antimicrobial and Anti-Inflammatory Activities

    Get PDF
    Ravichandran N. Murugan, Mija Ahn, Eunha Hwang, Ji-Hyung Seo, Chaejoon Cheong, Jeong Kyu Bang, Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chung-Buk, Republic of KoreaBinu Jacob, Song Yub Shin, Department of Bio-Materials, Graduate School and Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of KoreaHoik Sohn, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of AmericaHyo-Nam Park, Jae-Kyung Hyun, Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon, Republic of KoreaEunjung Lee, Ki-Woong Jeong, Yangmee Kim, Department of Bioscience and Biotechnology, Institute of SMART Biotechnology, Konkuk University, Seoul, Republic of KoreaKy-Youb Nam, Bioinformatics and Molecular Design Research Center, Yonsei University Research Complex, Seoul, Republic of KoreaBackground: Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability.-- Methodology/Principal Findings: In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(Ï€)- and N(Ï„)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti–methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. -- Conclusion/Significance: The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics.This work was supported in part by the Korea Basic Science Institute's research program grants T33418 (J.K.B) and T33518 (J-k.H.), and the Korea Research Foundation, funded by the Korean Government (KRF-2011-0009039 to S.Y.S.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.ChemistryBiochemistryEmail: [email protected] (JKB)Email: [email protected] (SYS

    Comparison of antibacterial activity and phenolic constituents of bark, lignum, leaves and fruit of Rhus verniciflua.

    No full text
    Rhus verniciflua is commonly known as a lacquer tree in Korea. The bark of R. verniciflua has been used as an immunostimulator in traditional medicine, but also causes allergic dermatitis due to urushiol derivatives. For the development of active natural resources with less toxicity, the antibacterial activity of various parts of R. verniciflua such as bark, lignum, leaves and fruit, together with chemical composition, were investigated. Among the various parts of R. verniciflua, lignum showed the most potent antibacterial activity against fish pathogenic bacteria such as Edwardsiella tarda, Vibrio anguillarum and Streptococcus iniae. Measurement of total phenolic content and flavonoid content clearly showed a high content of phenolic and flavonoids in lignum among the various parts of R. verniciflua. Further analysis showed a close correlation between antibacterial activity and phenolic content. In addition, methyl gallate and fustin, the major constituents of bark and lignum, showed antibacterial activity, which suggested phenolic constituents as active constituents. The content of urushiols, however, was highest in bark, but there was a trace amount in lignum. LC-MS-MS and PCA analysis showed good discrimination with the difference of phenolic composition in various parts of R. verniciflua. Taken together, phenolic compounds are responsible for the antibacterial activity of R. verniciflua. The lignum of R. verniciflua contains high content of phenolic compounds with less urushiols, which suggests efficient antibacterial activity with less toxicity. Therefore, the lignum of R. verniciflua is suggested as a good source for antibacterial material to use against fish bacterial diseases

    Pyridinic-N-Doped Graphene Paper from Perforated Graphene Oxide for Efficient Oxygen Reduction

    No full text
    We report a simple approach to fabricate a pyridinic-N-doped graphene film (N-pGF) without high-temperature heat treatment from perforated graphene oxide (pGO). pGO is produced by a short etching treatment with hydrogen peroxide. GO perforation predominated in a short etching time (∼1 h), inducing larger holes and defects compared to pristine GO. The pGO is advantageous to the formation of a pyridinic N-doped graphene because of strong NH<sub>3</sub> adsorption on vacancies with oxygen functional groups during the nitrogen-doping process, and the pyridinic-N-doped graphene exhibits good electrocatalytic activity for oxygen reduction reaction (ORR). Using rotating-disk electrode measurements, we confirm that N-pGF undergoes a four-electron-transfer process during the ORR in alkaline and acidic media by possessing sufficient diffusion pathways and readily available ORR active sites for efficient mass transport. A comparison between Pt/N-pGF and commercial Pt/C shows that Pt/N-pGF has superior performance, based on its more positive onset potential and higher limiting diffusion current at −0.5 V
    corecore