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ABSTRACT 
 
The seismic site coefficients derived deterministically are often used with ground motion parameters determined by probabilistic 
seismic hazard analysis in construction of the design response spectrum. There is, therefore, an inherent incompatibility between two 
approaches. New methods have been developed to resolve this incompatibility by developing probabilistic seismic site coefficients. In 
such approaches, the uncertainties in the properties of the ground were not systematically accounted for due to lack of measurements 
of the ground. In this study, an integrated probabilistic seismic hazard analysis which can quantify the nonlinear seismic site effects 
and account for the uncertainties in soil properties is developed and used to generate the uniform hazard response spectra in Korea. 
The procedure used an extensive database of measured shear wave velocity profiles and dynamic curves, which included more than 
114 shear wave velocity profiles and more than 15 dynamic curves. The calculated uniform hazard response spectra were compared to 
the design spectra. Comparisons show significant discrepancy between two spectra, and highlight the need to revise the current design 
guideline.  
 

 
INTRODUCTION 
 
Probabilistic seismic hazard analysis (PSHA) is widely used to 
quantify the hazard originating from future earthquakes 
(Frankel et al., 2002; Cramer et al., 2002; Kramer, 1996). The 
result of a PSHA is most often represented in the form of the 
seismic hazard map, which depicts the contours of a ground 
motion parameter for various probability levels. 
 
The seismic site effects is known to have an important 
influence on the characteristics of the ground motion and need 
to be considered in the characterization of the seismic hazard. 
A traditional PSHA method, however, cannot account for the 
seismic site effects. It is a common practice to link the 
probabilistically determined ground motion parameter(s) 
calculated from the PSHA with deterministically derived site 
coefficients in developing the design acceleration response 
spectrum (DS), thus neglecting the inherent incompatibility 
(MOCT, 1997; FEMA, 1997).  
 
Park and Hashash (2005) developed a new PSHA procedure 
(PSHA-NL) that can incorporate the seismic site effects within 
the probabilistic framework. PSHA-NL, which is based on the 
work of Wen and Wu (2001), generated fully probabilistic and 

depth-dependent site coefficients of the Mississippi 
Embayment that are compatible with the USGS seismic 
hazard maps. In the development, uncertainties in the ground 
properties were not taken into account.  
 
This paper applied the PSHA-NL approach in developing the 
uniform hazard response spectra (UHRS) of Korea. An 
extensive database of measured site profiles was used to 
model the uncertainties in the site profile. In addition, a series 
of site-specific and generic dynamic curves were used to 
account for the variability in the dynamic soil behavior. The 
probabilistically derived UHRS were compared to the Korean 
seismic design code (MOCT, 1997). 
 
 
SEISMIC HAZARD OF KOREA AND DESIGN CODE 
 
The probabilistic seismic hazard maps (MOCT, 1997) depict 
variations of the peak ground acceleration (PGA) for various 
mean annual rates of exceedance. The PGA of Korea can also 
be determined from the seismic zone classification system 
(MOCT, 1997).  
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Table 1. Site classification of Korean seismic design guideline (MOCT, 1997) 

 

Site class Description sv  chN or N  us  

SA Hard rock > 1500 m/s N.A. N.A. 
SB Rock   760  to 1500 m/s N.A. N.A. 
SC Very dense soil and soft rock 360 to 760 m/s > 50 > 100 kPa 
SD Stiff soil 180 to 360 m/s 15 to 50 50 to 100 kPa 
SE Soft soil < 180 m/s < 15 < 50 kPa 
SF Soils requiring site-specific evaluations 

 
 

Table 2. Comparison of site coefficients of MOCT (1997) and 1997 NEHRP (FEMA, 1997) 
 

Site Ca 
Fa 

(MOCT) 
Fa  

(NEHRP) 
Cv 

Fv 

(MOCT) 
Fv 

(NEHRP) 

SA 0.09 0.81 0.80 0.09 0.81 0.80 
SB 0.11 1.00 1.00 0.11 1.00 1.00 
SC 0.13 1.17 1.20 0.18 1.62 1.69 
SD 0.16 1.44 1.58 0.23 2.07 2.36 
SE 0.22 1.98 2.42 0.37 3.33 3.47 
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Fig. . 1 Design response spectrum characterization (MOCT, 

1997). 
 
The system divides South Korea into two zones (termed Seismic 
Zone I and II), at which PGAs of 0.11g and 0.07g are assigned 
for an earthquake with a return period of 500 years, respectively. 
After selecting the PGA, it is used with site coefficients to 
develop the DS. The site classification system used in the 
Korean seismic design guideline (MOCT, 1997) is summarized 
in Table 1 and the corresponding site coefficients are listed in 
Table 2. The procedure of developing the DS is illustrated in Fig. 
2. 
Korean site classification system is identical to 1997 NEHRP 
Provisions (FEMA, 1997) and 1997 UBC, which classifies the 
soil column into six categories based on the average shear wave 
velocity (often termed Vs30), standard penetration resistance, or 
undrained shear strength of the upper 30 m of the soil profile, as 
shown in Table 1. Table 2 lists the site coefficients Ca and Cv 
for all site classes. Ca represents the PGA, while Cv represents 

the 1.0 sec spectral acceleration. Also shown in Table 2 are the 
calculated Fa and Fv, which are not specifically defined in the 
design code (MOCT, 1997), but calculated in this study to 
compare with the 1997 NEHRP coefficients (FEMA, 1997), 
also listed in Table 2. Table 2 demonstrates that the MOCT 
(1997) and 1997 NEHRP (FEMA, 1997) coefficients are very 
similar. When developing the DS at other return periods, both 
site coefficients are simply multiplied by the Safety factor, 
which are defined as 1.4 and 2.0 for 1000 and 2400 year return 
periods, respectively. 
 

 
Fig. 2.  Locations of epicenters simulated during a period 

40,000 years. 
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(a) (b) (c)
 

Fig. 3.  Seismic hazard maps developed from PSHA-NL (units in the legend: 0.01g): a) 500 year return-period, b) 1000 year return-
period, a) 2400 year return-period. 

 
PSHA WITH NONLINEAR SEISMIC SITE EFFECTS 
 
PSHA-NL, developed by Park and Hashash (2003), integrates 
the PSHA with the site response analysis tool. PSHA-NL is 
performed in 3 steps, which are a) step 1: source 
characterization, b) step 2: generation of ground motions, and c) 
step 3: site response analysis. Before performing the PSHA-NL, 
the area is subdivided into 0.1  0.1 grids. The seismicity of 
each grid is defined according to the seismic design code.  
 
In step 1 of the PSHA-NL, a random number which is uniformly 
distributed between 0 and 1 is generated within the grid. The 
generated number is related to the number of occurrence and 
magnitude during a 10-year simulation. Details on this process 
are presented in Park (2003). This process is repeated for a finite 
period until the aggregate of generated earthquakes corresponds 
to the seismicity of the grid.  
 
In step 2, a site of interest is selected within the map. Among all 
earthquakes generated in step 1, earthquakes that occurs within a 
radius of 300 km are selected and the magnitudes – distances are 
recorded. A standard PSHA uses the attenuation relationship to 
estimate the ground motion parameter at the selected site. 
PSHA-NL uses a synthetic ground motion generation program 
to actually develop the acceleration time history.  
 
In step 3, the generated motions are propagated through the site 
profiles of the site. By propagating all ground motions generated 
within 300 km from the site, the surface acceleration time 
histories and response spectra are obtained. The response 
spectra are used to develop the uniform hazard response 
spectrum (UHRS).  
 
 
 

The accuracy of the PSHA-NL depends on the number of 
simulations. In this study, 4000 simulations of 10-year periods 
are performed, resulting in 40,000 years of earthquake record 
and 16,378 earthquake sources. The locations of the simulated 
sources are shown in Fig. 2. The ground motions were generated 
using SMSIM (Boore, 2002). SMSIM, which uses a point-
source stochastic model in generating the earthquake scenario 
compatible synthetic motion, was used in development of the 
USGS hazard maps. The input parameters for SMSIM 
representative of the Korean seismic environment were 
proposed by Noh and Lee (1994) and used in the generation. 
The seismic hazard maps produced by the PSHA-NL are shown 
in Fig. 3. The calculated maps are almost identical to the maps 
in the seismic design code of Korea (MOCT, 1997), thus 
validating that step 1 and 2 of the PSHA-NL was performed 
correctly.  
 
 
GROUND PROPERTIES 
 
The uncertainties and variability in soil properties were 
accounted for by building a database of site profiles and 
randomly selecting from the database in performing the site 
response analysis. An extensive database consisting of 98 
measured site profiles was used. For site classes SC, SD, and SE, 
52, 36, and 10 profiles were used, respectively. The 
stratigraphies were also available for all site profiles. The soil 
types of the layers of the soil columns were classified as one of 
four categories, which were clay, sand, gravel, and rock. The 
dynamic curves were assigned accordingly based on the layer 
information. The dynamic curves used in the analyses were also 
randomly selected from the sets of curves summarized in Table 
3. Identical weights were assigned to all curves within the 
classified category.  
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Fig. 4.  Vs profiles categorized into site classes SC, SD, and SE. 
 
 

Table 3. Dynamic curves used in the analyses 
 

Soil type Developer Selected curves 

Clay 

(Dobry and Vucetic, 1987) PI=15, 30, 50 

(Sun et al., 1988) Lower, Average, Upper 

(Kim and Choo, 2001)  Clay, Reclaimed soil 

Sand 
(Seed and Idriss, 1970) Lower, Mean, Upper 

(Kim and Choo, 2001) 
Alluvial soil,  

Weathered soil 

Gravel (Seed et al., 1986) Gravel 

Rock (Schnabel, 1973) Weak rock 

 
UNIFORM RESPONSE SPECTRA 
 
Equivalent linear analysis was used to propagate the suite of 
generated ground motions. The location selected in this study 
was 36.35  127.45, at which the PGA for a return period of 
500 years is 0.11g (identical to PGA at Seismic Zone I). The 
number of ground motions generated at this site was 850.  
 
Fig. 5 compares the UHRS and the DS for site classes SC, SD, 
and SE, respectively. Significant differences between the UHRS 
and the DS of MOCT (1997) are observed. The UHRS of SC 
profiles is significantly larger and stiffer than the DS. For SD, 
the UHRS is only slightly larger and stiffer than the DS. The DS 
is much larger than the UHRS for SD. There are numerous 
reasons for this pronounced discrepancy. Firstly, the site 

coefficients in Korea are based on 1997 NEHRP (FEMA, 1997), 
which developed site coefficients mainly for soil profiles 
exceeding 30 m. The representative thickness of soil profiles in 
Korea are below 20 m. Secondly, the difference can be due to 
probabilistic and deterministic nature of the derived site 
coefficients. Other possible reasons include the use of different 
dynamic properties, soil profiles, and ground motions etc. Since 
the current study used extensive soil profiles measured in Korea, 
motions representative of seismic environment of Korea, and the 
UHRS are fully compatible with the seismic hazard map, the 
derived UHRS is considered to be more accurate than that of the 
design spectra of MOCT (1997). 
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Fig. 5. UHRS, DS based on (MOCT, 1997), and proposed DS. 

 
 
CONCLUSIONS 
 
This paper applied the PSHA-NL, which integrates the 
traditional PSHA and seismic site effect characterization 
function, to develop uniform hazard response spectra (UHRS) of 
Korea.  
 
To develop “truly” probabilistic UHRS, the uncertainties and 
randomness of the ground properties were accounted for by 
using extensive databases of measured shear wave velocity 
profiles - stratigraphies and dynamic curves for site classes 
considered in this study.  
 
The calculated uniform hazard response spectra were compared 
to the design spectra. The comparisons indicate that the design 
spectra presented in the current design guideline are NEHRP 
based and are not suitable for soil profiles of Korea. The design 
response spectra of site classes SC and SD highly underestimates 
the seismic hazard, while it is overestimated for SE.  
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