15 research outputs found

    Mitochondrial hypermetabolism precedes impaired autophagy and synaptic disorganization in App knock-in Alzheimer mouse models.

    Get PDF
    Accumulation of amyloid β-peptide (Aβ) is a driver of Alzheimer's disease (AD). Amyloid precursor protein (App) knock-in mouse models recapitulate AD-associated Aβ pathology, allowing elucidation of downstream effects of Aβ accumulation and their temporal appearance upon disease progression. Here we have investigated the sequential onset of AD-like pathologies in AppNL-F and AppNL-G-F knock-in mice by time-course transcriptome analysis of hippocampus, a region severely affected in AD. Strikingly, energy metabolism emerged as one of the most significantly altered pathways already at an early stage of pathology. Functional experiments in isolated mitochondria from hippocampus of both AppNL-F and AppNL-G-F mice confirmed an upregulation of oxidative phosphorylation driven by the activity of mitochondrial complexes I, IV and V, associated with higher susceptibility to oxidative damage and Ca2+-overload. Upon increasing pathologies, the brain shifts to a state of hypometabolism with reduced abundancy of mitochondria in presynaptic terminals. These late-stage mice also displayed enlarged presynaptic areas associated with abnormal accumulation of synaptic vesicles and autophagosomes, the latter ultimately leading to local autophagy impairment in the synapses. In summary, we report that Aβ-induced pathways in App knock-in mouse models recapitulate key pathologies observed in AD brain, and our data herein adds a comprehensive understanding of the pathologies including dysregulated metabolism and synapses and their timewise appearance to find new therapeutic approaches for AD

    Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling

    Get PDF
    Background: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. Results: Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. Conclusion: We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases

    Identification of cytoskeletal proteins as binding partners of Bri2 BRICHOS domain

    No full text
    Proteins must fold into three-dimensional structures to execute their biological functions. Therefore, maintenance of protein homeostasis, proteostasis, including prevention of protein misfolding is essential for cellular activity and health. Molecular chaperones are key actors in proteostasis. BRICHOS domain is an intramolecular chaperone that also interferes with several aggregation-prone proteins including amyloid beta (A beta), involved in Alzheimer's disease (AD). To extend the knowledge about Bri2 BRICHOS interactome we here used recombinant human (rh) Bri2 BRICHOS-mCherry fusion protein to probe for potential binding partners. Firstly, exogenously added Bri2 BRICHOS-mCherry was used to stain brain sections of wildtype and amyloid precursor protein (App) knock-in AD mice exhibiting robust A beta pathology. Unexpectedly, we found that rh Bri2 BRICHOS-mCherry stained the cytoplasm of neurons which are devoid of A beta deposits. To identify these intraneuronal proteins that bind to the rh Bri2 BRICHOS domain, we performed co-immunoprecipitation (co-IP) of mouse brain hippocampi homogenates using the Bri2 BRICHOS-mCherry probe and analyzed co-IP proteins by LC-MS/MS. This identified several cytoskeletal proteins including spectrin alpha and beta chain, drebrin, tubulin beta 3, and beta-actin as binding partners. The interactions were confirmed by a second round of pulldown experiments using rh Bri2 BRICHOS linked to magnetic beads. The interaction of rh Bri2 BRICHOS and tubulin beta 3 was further investigated by staining both mouse brain sections and SH-SY5Y neuroblastoma cells with rh Bri2 BRICHOSmCherry and tubulin beta 3 immunostaining, which revealed partial co-localization. These data suggest a possible interplay of extracellular chaperone Bri2 BRICHOS domain in the intracellular space including the cytoskeleton

    Inhibitory Effects of Red Wine Extracts on Endothelial-Dependent Adhesive Interactions with Monocytes Induced by Oxysterols

    No full text
    Red wine polyphenolic compounds have been demonstrated to possess antioxidant properties, and several studies have suggested that they might constitute a relevant dietary factor in the protection from coronary heart disease. The aim of the present study is to examine whether red wine extracts (RWE) can ameliorate oxysterol-induced endothelial response, and whether inhibition of adhesion molecule expression is involved in monocyte adhesion to endothelial cells. Surface expression and mRNA levels of adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1) were determined by ELISA and RT-PCR performed on human aortic endothelial cells (HAEC) monolayers stimulated with 7b-hydroxycholesterol or 25-hydroxycholesterol. Incubation of HAEC with oxysterols (10 muM) increased expression of adhesion molecules in a time-dependent manner. Pretreatment of HAEC with RWE at final concentrations of 1, 10, and 100 ng/ml significantly inhibited the increase of surface protein expression and mRNA levels. Adherence of monocytes to oxysterol-stimulated HAEC was increased compared to that of unstimulated cells. Treatment of HAEC with RWE significantly inhibited adherence of monocytes. These results suggest that RWE works as an anti-atherogenic agent through the inhibition of endothelial-dependent adhesive interactions with monocytes induced by oxysterol

    The Expression of the Endocannabinoid Receptors CB2 and GPR55 Is Highly Increased during the Progression of Alzheimer’s Disease in <i>App<sup>NL-G-F</sup></i> Knock-In Mice

    No full text
    Background: The endocannabinoid system (ECS) and associated lipid transmitter-based signaling systems play an important role in modulating brain neuroinflammation. ECS is affected in neurodegenerative disorders, such as Alzheimer’s disease (AD). Here we have evaluated the non-psychotropic endocannabinoid receptor type 2 (CB2) and lysophosphatidylinositol G-protein-coupled receptor 55 (GPR55) localization and expression during Aβ-pathology progression. Methods: Hippocampal gene expression of CB2 and GPR55 was explored by qPCR analysis, and brain distribution was evaluated by immunofluorescence in the wild type (WT) and APP knock-in AppNL-G-F AD mouse model. Furthermore, the effects of Aβ42 on CB2 and GPR55 expression were assessed in primary cell cultures. Results: CB2 and GPR55 mRNA levels were significantly upregulated in AppNL-G-F mice at 6 and 12 months of age, compared to WT. CB2 was highly expressed in the microglia and astrocytes surrounding the Aβ plaques. Differently, GPR55 staining was mainly detected in neurons and microglia but not in astrocytes. In vitro, Aβ42 treatment enhanced CB2 receptor expression mainly in astrocytes and microglia cells, whereas GPR55 expression was enhanced primarily in neurons. Conclusions: These data show that Aβ pathology progression, particularly Aβ42, plays a crucial role in increasing the expression of CB2 and GPR55 receptors, supporting CB2 and GPR55 implications in AD

    Propagation of pathological α-synuclein in marmoset brain

    No full text
    α-Synuclein is a defining, key component of Lewy bodies and Lewy neurites in Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), as well as glial cytoplasmic inclusions in multiple system atrophy (MSA). The distribution and spreading of these pathologies are closely correlated with disease progression. Recent studies have revealed that intracerebral injection of synthetic α-synuclein fibrils or pathological α-synuclein prepared from DLB or MSA brains into wild-type or transgenic animal brains induced prion-like propagation of phosphorylated α-synuclein pathology. The common marmoset is a very small primate that is expected to be a useful model of human diseases. Here, we show that intracerebral injection of synthetic α-synuclein fibrils into adult wild-type marmoset brains (caudate nucleus and/or putamen) resulted in spreading of abundant α-synuclein pathologies, which were positive for various antibodies to α-synuclein, including phospho Ser129-specific antibody, anti-ubiquitin and anti-p62 antibodies, at three months after injection. Remarkably, robust Lewy body-like inclusions were formed in tyrosine hydroxylase (TH)-positive neurons in these marmosets, strongly suggesting the retrograde spreading of abnormal α-synuclein from striatum to substantia nigra. Moreover, a significant decrease in the numbers of TH-positive neurons was observed in the injection-side of the brain, where α-synuclein inclusions were deposited. Furthermore, most of the α-synuclein inclusions were positive for 1-fluoro-2,5-bis (3-carboxy-4-hydroxystyryl) benzene (FSB) and thioflavin-S, which are dyes widely used to visualize the presence of amyloid. Thus, injection of synthetic α-synuclein fibrils into brains of non-transgenic primates induced PD-like α-synuclein pathologies within only 3 months after injection. Finally, we provide evidence indicating that neurons with abnormal α-synuclein inclusions may be cleared by microglial cells. This is the first marmoset model for α-synuclein propagation. It should be helpful in studies to elucidate mechanisms of disease progression and in development and evaluation of disease-modifying drugs for α-synucleinopathies

    Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid β-oxidation in skin fibroblasts of X-linked adrenoleukodystrophy

    Get PDF
    AbstractThe purpose of the present study is to identify bioactive compounds with potential for X-linked adrenoleukodystrophy (X-ALD) pharmacological therapy. Various plant natural products including flavonoids were tested for their ability to ameliorate the abnormality of very long chain fatty acid (VLCFA) metabolism in cultured skin-fibroblasts from X-ALD patients. Of the compounds tested, baicalein 5,6,7-trimethyl ether (baicalein-tri-Me) was found to significantly stimulate the VLCFA β-oxidation activity. Furthermore, the incorporation of [1-14C]lignoceric acid into cholesteryl esters was markedly reduced towards the normal level and the VLCFA (C24:0 and C26:0) content was decreased. These results make baicalein-tri-Me a candidate for the therapeutic compound for X-ALD
    corecore