15 research outputs found

    Dietary fiber showed no preventive effect against colon and rectal cancers in Japanese with low fat intake: an analysis from the results of nutrition surveys from 23 Japanese prefectures

    Get PDF
    BACKGROUND: Since Fuchs' report in 1999, the reported protective effect of dietary fiber from colorectal carcinogenesis has led many researchers to question its real benefit. The aim of this study is to evaluate the association between diet, especially dietary fiber and fat and colorectal cancer in Japan. METHODS: A multiple regression analysis (using the stepwise variable selection method) was performed using the standardized mortality ratios (SMRs) of colon and rectal cancer in 23 Japanese prefectures as objective variables and dietary fiber, nutrients and food groups as explanatory variables. RESULTS: As for colon cancer, the standardized partial correlation coefficients were positively significant for fat (1,13, P = 0.000), seaweeds (0.41, P = 0.026) and beans (0.45, P = 0.017) and were negatively significant for vitamin A (-0.63, P = 0.003), vitamin C (-0.42, P = 0.019) and yellow-green vegetables (-0.37, P = 0.046). For rectal cancer, the standardized partial correlation coefficient in fat (0.60, P = 0.002) was positively significant. Dietary fiber was not found to have a significant relationship with either colon or rectal cancers. CONCLUSIONS: This study failed to show any protective effect of dietary fiber in subjects with a low fat intake (Japanese) in this analysis, which supports Fuchs' findings in subjects with a high fat intake (US Americans)

    Random family method: Confirming inter-generational relations by restricted re-sampling

    No full text
    Randomness is one of the important key concepts of statistics. In epidemiology or medical science, we investigate our hypotheses and interpret results through this statistical randomness. We hypothesized by imposing some conditions to this randomness, interpretation of our result may be changed. In this article, we introduced the restricted re-sampling method to confirm inter-generational relations and presented an example

    Lipopolysaccharide induces mouse translocator protein (18 kDa) expression via the AP-1 complex in the microglial cell line, BV-2.

    No full text
    It has been reported that neuroinflammation occurs in the central nervous system (CNS) in patients with neuropathic pain, Alzheimer's disease and autism spectrum disorder. The 18-kDa translocator protein TSPO is used as an imaging target in positron emission tomography to detect neuroinflammation, and its expression is correlated with microglial activation. However, the mechanism underlying the transcriptional regulation of Tspo induced by inflammation is not clear. Here, we revealed that lipopolysaccharide (LPS) -induced Tspo expression was activated by the AP-1 complex in a mouse microglial cell line, BV-2. Knockdown of c-Fos and c-Jun, the components of AP-1, reduced LPS-induced Tspo expression. Furthermore, the enrichment of Sp1 in the proximal promoter region of Tspo was increased in the presence of LPS. In addition, the binding of histone deacetylase 1 (HDAC1) to the enhancer region, which contains the AP-1 site, was decreased by LPS treatment, but there were no significant differences in HDAC1 binding to the proximal promoter region with or without LPS. These results indicated that HDAC1 is involved not in the proximal promoter region but in the enhancer region. Our study revealed that inflammatory signals induce the recruitment of AP-1 to the enhancer region and Sp1 to the proximal promoter region of the Tspo gene and that Sp1 may regulate the basal expression of Tspo

    Pathological substrate of memory impairment in multiple system atrophy

    No full text
    AIMS AND METHODS: Synaptic dysfunction in Parkinson's disease is caused by propagation of pathogenic α-synuclein between neurons. Previously, in multiple system atrophy (MSA), pathologically characterised by ectopic deposition of abnormal α-synuclein predominantly in oligodendrocytes, we demonstrated that the occurrence of memory impairment was associated with the number of α-synuclein-positive neuronal cytoplasmic inclusions (NCIs) in the hippocampus. Here, using a mouse model of adult-onset MSA and human cases (MSA, N = 25; Parkinson's disease, N = 3, Alzheimer's disease, N = 2; normal controls, N = 11), we aimed to investigate how abnormal α-synuclein in the hippocampus can lead to memory impairment. RESULTS: In the MSA model, inducible human α-synuclein was first expressed in oligodendrocytes, and subsequently accumulated in the cytoplasm of excitatory hippocampal neurons (NCI-like structures) and their presynaptic nerve terminals with the development of memory impairment. α-Synuclein oligomers increased simultaneously in the hippocampus of the MSA model. Hippocampal dendritic spines also decreased in number, followed by suppression of long-term potentiation. Consistent with these findings obtained in the MSA model, post-mortem analysis of human MSA brain tissues showed that cases of MSA with memory impairment developed more NCIs in excitatory hippocampal neurons along with α-synuclein oligomers than those without. CONCLUSIONS: our results provide new insights into the role of α-synuclein oligomers as a possible pathological cause of memory impairment in MSA
    corecore